• Title/Summary/Keyword: 2.4GHz Band Applications

Search Result 180, Processing Time 0.029 seconds

Design of SIR-based Bandstop Filter with Symmetrical Hairpin Wideband (SIR 기반 대칭 헤어핀 광대역 대역저지 여파기)

  • Kim, Chang-Soon;Lee, Yong-IL
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.1
    • /
    • pp.43-46
    • /
    • 2018
  • This paper has designed a wideband bandpass filter (WBSF : Wide Band Stop Filter) using a stepped impedance resonator (SIR : Stepped Impedance Resonator) with improved performance and improved hairpin coupling structure. The SIR WBSF is small in size and has the advantage of having excellent bandstop characteristics. The designed BSF has a structure in which a quadrangular shaped hairpin of a / 4 length is arranged symmetrically on the upper and lower sides of the input and output transmission lines. The input and output terminals were terminated at 50 ohms for system applications. The center frequency of the SIR WBSF is 6.3 GHz, which is the second harmonic of 3.15 GHz. The designed filter has a 3dB bandwidth of 2.9 GHz and a transmission coefficient ($S_{21}$) of 33.2 dB. The reflection coefficient ($S_{11}$) at the center frequency is 0.106 dB. The application field is used for fixed microwave relay stations, fixed satellite and earth stations, and fixed satellite communications. The overall size is $20mm{\times}10mm$.

Substrate-integrated-waveguide cavity-backed circularly polarized antenna with enhanced bandwidth and gain

  • Shankaragouda M. Patil;Rajeshkumar Venkatesan
    • ETRI Journal
    • /
    • v.46 no.3
    • /
    • pp.404-412
    • /
    • 2024
  • We propose a method for increasing the bandwidth of a substrate-integrated-waveguide (SIW) cavity-backed antenna with taper-based micro-strip SIW transition feeding. For radio transmission, a circular slot is etched on top of the SIW cavity. For optimal antenna design, the slot is etched slightly away from the cavity center to generate circularly polarized waves. Simulations show a wide axial ratio bandwidth of 7.860% between 11.02 GHz and 11.806 GHz. Experimental results confirm a similar wide axial ratio bandwidth of 4.9% between 10.8 GHz and 11.35 GHz. An SIW feed from an inductive window excites the radiating circular slot, resulting in a simulated wide impedance range of 1.548 GHz (10.338 GHz-11.886 GHz) and bandwidth of 13.93%. Experimental results show a wide impedance of 2.08 GHz (10.2 GHz-12.08 GHz) and bandwidth of 18.84%. The SIW cavity-backed antenna creates a unidirectional pattern, leading to gains of 6.61 dBi and 7.594 dBi in simulations and experiments, respectively. The proposed antenna was fabricated on a Rogers RT/Duroid 5880 substrate, and the reflection coefficient, radiation patterns, and gains were tested and compared using a computer simulator. The developed broadband antenna seems suitable for X-band applications.

60 GHz CMOS SoC for Millimeter Wave WPAN Applications (차세대 밀리미터파 대역 WPAN용 60 GHz CMOS SoC)

  • Lee, Jae-Jin;Jung, Dong-Yun;Oh, Inn-Yeal;Park, Chul-Soon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.21 no.6
    • /
    • pp.670-680
    • /
    • 2010
  • A low power single-chip CMOS receiver for 60 GHz mobile application are proposed in this paper. The single-chip receiver consists of a 4-stage current re-use LNA with under 4 dB NF, Cgs compensating resistive mixer with -9.4 dB conversion gain, Ka-band low phase noise VCO with -113 dBc/Hz phase noise at 1 MHz offset from 26.89 GHz, high-suppression frequency doubler with -0.45 dB conversion gain, and 2-stage current re-use drive amplifier. The size of the fabricated receiver using a standard 0.13 ${\mu}m$ CMOS technology is 2.67 mm$\times$0.75 mm including probing pads. An RF bandwidth is 6.2 GHz, from 55 to 61.2 GHz and an LO tuning range is 7.14 GHz, from 48.45 GHz to 55.59 GHz. The If bandwidth is 5.25 GHz(4.75~10 GHz) The conversion gain and input P1 dB are -9.5 dB and -12.5 dBm, respectively, at RF frequency of 59 GHz. The proposed single-chip receiver describes very good noise performances and linearity with very low DC power consumption of only 21.9 mW.

L-band Voltage Controlled Oscillator for Ultra-Wideband System Applications (초광대역 응용 시스템을 위한 L밴드 전압제어발진기 설계)

  • Koo Bonsan;Shin Guem-Sik;Jang Byung-Jun;Ryu Keun-Kwan;Lee Moon-Que
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.15 no.9
    • /
    • pp.820-825
    • /
    • 2004
  • In this paper an octave tuning voltage controlled oscillator which is used in set-top TV tuner was designed. Oscillation frequency range is 0.9 GHz~2.2 GHz with 1.3 GHz bandwidth. By using 4 varactor diodes in base and emitter of transistor, wide-band tuning, sweep linearity and low phase noise could be achieved. Designed VCO requires a tuning voltage of 0 V ~ 20 V and DC consumption of 10 V and 15 mA. Designed VCO exhibits an output power of 5.3 dBm $\pm$1.1 dB and a phase noise below -94.8 dBc/Hz @ 10 kHz over the entire frequency range. The sweep linearity shows 65 MHz/V with a deviation of $\pm$10 MHz.

Design of Compact Stepped Open Slot Antenna for UWB Applications (UWB 응용을 위한 소형 계단형 개방 슬롯 안테나 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • In this paper, a design method for a compact stepped open slot antenna for an operation in the UWB band is studied. The proposed antenna is miniaturized by inserting L-shaped slots on the ground plane of the stepped open slot antenna through the creation of a resonance in the low frequency, and a strip director is appended to the antenna in order to increase the gain in the middle and high frequency regions. The effects of varying the length of the L-shaped slots, the distance between the director and the slot antenna, and the director length on input reflection coefficient and realized gain characteristics of the proposed antenna are analyzed. The optimized antenna with the size of $30mm{\times}30mm$ is fabricated on an FR4 substrate, and the experiment results show that the antenna has a frequency band of 3.02-11.04 GHz for a VSWR < 2, which assures the operation in the UWB band.

A Dual Baud Microstrip Antenna with Soft Surface for Gapfiller Applications (Soft Surface를 이용한 신호 중계 장치용 이중 대역 마이크로스트립 안테나)

  • Kim, Byoung-Chul;Ryu, Joon-Gyu;Choo, Ho-Sung;Jang, Dae-Ik;Park, Ik-Mo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.20 no.11
    • /
    • pp.1145-1160
    • /
    • 2009
  • In this paper, a dual band microstrip antenna with soft surface for gapfiller applications is proposed. The proposed antenna with similar radiation pattern and gain is fabricated on RO4003 substrate with a dielectric constant of 3.38 and a thickness of 0.508 mm, and operates in IEEE 802.11a/b bands. The size of the antenna is $50{\times}56.5{\times}5.5\;mm^3$ and the ground plane size including soft surface structure is $175.0{\times}154.4\;mm^2$. The antenna is fed by coaxial cable. The simulated bandwidths of the antenna are 2.388~2.493 GHz and 5.561~6.051 GHz for VSWR<2. The gains are 10.63 dBi and 10.33 dBi, respectively, for the lower and upper bands.

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology (LTCC 기술을 적용한 집적화된 2.4 GHz 대역 무선 송수신 모듈 구현)

  • Kim, Dong-Ho;Kim, Dong-Su;Ryu, Jong-In;Kim, Jun-Chul;Park, Chong-Dae;Park, Jong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.2
    • /
    • pp.154-161
    • /
    • 2011
  • This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.

A study on Folded Monopole Antenna for Wireless HDMI Dongle Applications (무선 HDMI 동글장치를 위한 폴디드 모노폴 안테나에 관한 연구)

  • Lee, Yun-Min;Lee, Jae-Choon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.4
    • /
    • pp.211-215
    • /
    • 2015
  • In this paper, we propose a internal antenna for wirless HDMI dongle device using the folded monopole structure. The proposed antenna is for 2.4GHz and 5.8GHz. The antenna optimized for parameters length, gap, width, and radius of semicircular of monopole antenna using the 'F' structure. To confirm the characteristics of the antenna parameters, HFSS from ANSYS Inc. was used for the analysis. We used an FR4 dielectric substrate with a dielectric constant of 4.4. The HDMI dongle size of the proposed antenna is $45{\times}20{\times}1mm$, and the size of the antenna area is $5{\times}20mm$. There is a value of return loss less then -10dB in 2.4GHz and 5.8GHz, band and the maximum antenna gain is -4.13dBi. The result proved the possibility of the practical using 'F' structure that came frin comparing and analyzing the measured and simulated data of the antenna.

A 2.3-2.7 GHz Dual-Mode RF Receiver for WLAN and Mobile WiMAX Applications in $0.13{\mu}m$ CMOS (WLAN 및 Mobile WiMAX를 위한 2.3-2.7 GHz 대역 이중모드 CMOS RF 수신기)

  • Lee, Seong-Ku;Kim, Jong-Sik;Kim, Young-Cho;Shin, Hyun-Chol
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.47 no.3
    • /
    • pp.51-57
    • /
    • 2010
  • A dual-mode direct conversion receiver is developed in $0.13\;{\mu}m$ RF CMOS process for IEEE 802.11n based wireless LAN and IEEE 802.16e based mobile WiMAX application. The RF receiver covers the frequency band between 2.3 and 2.7 GHz. Three-step gain control is realized in LNA by using current steering technique. Current bleeding technique is applied to the down-conversion mixer in order to lower the flicker noise. A frequency divide-by-2 circuit is included in the receiver for LO I/Q differential signal generation. The receiver consumes 56 mA at 1.4 V supply voltage including all LO buffers. Measured results show a power gain of 32 dB, a noise figure of 4.8 dB, a output $P_{1dB}$ of +6 dBm over the entire band.

Ultra-Wide-Band (UWB) Band-Pass-Filter for Wireless Applications from Silicon Integrated Passive Device (IPD) Technology

  • Lee, Yong-Taek;Liu, Kai;Frye, Robert;Kim, Hyun-Tai;Kim, Gwang;Aho, Billy
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.18 no.1
    • /
    • pp.41-47
    • /
    • 2011
  • Currently, there is widespread adoption of silicon-based technologies for the implementation of radio frequency (RF) integrated passive devices (IPDs) because of their low-cost, small footprint and high performance. Also, the need for high speed data transmission and reception coupled with the ever increasing demand for mobility in consumer devices has generated a great interest in low cost devices with smaller form-factors. The UWB BPF makes use of lumped IPD technology on a silicon substrate CSMP (Chip Scale Module Package). In this paper, this filter shows 2.0 dB insertion loss and 15 dB return loss from 7.0 GHz to 9.0 GHz. To the best of our knowledge, the UWB band-pass-filter developed in this paper has the smallest size ($1.4\;mm{\times}1.2\;mm{\times}0.40\;mm$) while achieving equivalent electrical performance.