Browse > Article
http://dx.doi.org/10.5515/KJKIEES.2011.22.2.154

A Compact Integrated RF Transceiver Module for 2.4 GHz Band Using LTCC Technology  

Kim, Dong-Ho (Korea Electronics Technology Institute)
Kim, Dong-Su (Korea Electronics Technology Institute)
Ryu, Jong-In (Korea Electronics Technology Institute)
Kim, Jun-Chul (Korea Electronics Technology Institute)
Park, Chong-Dae (Department of Electronics Engineering, Myongji University)
Park, Jong-Chul (Korea Electronics Technology Institute)
Publication Information
Abstract
This paper presents a compact integrated transceiver module for 2.4 GHz band applications using Low Temperature Co-fired Ceramic(LTCC) technology. The implemented transceiver module is divided into an RF Front-End Module (FEM) part and a transceiver IC chip part. The RF FEM part except an SPDT switch and DC block capacitors is fully embedded in the LTCC substrate. The fabricated RF FEM has 8 pattern layers and it occupies less than $3.3\;mm{\times}5.2\;mm{\times}0.4\;mm$. The measured results of the implemented RF FEM are in good agreement with the simulated results. The transceiver IC chip part consists of signal line, power line and transceiver IC for 2.4 GHz band communication system. The fabricated transceiver module has 9 layers including three inner grounds and it occupies less than $12\;mm{\times}8.0\;mm{\times}1.1\;mm$. The implemented transceiver module provides an output power of 18.1 dBm and a sensitivity of -85 dBm.
Keywords
Low Temperature Co-fired Ceramic(LTCC); RF Front-End Module; Transceiver Module;
Citations & Related Records
연도 인용수 순위
  • Reference
1 W. Byun, B. S. Kim, K. S. Kim, K. C. Eun, M. S. Song, Reinhard Kulke, Olaf Kersten, Gregor Mollenbeck, and Matthias Rittweger, "Design of vertical transition for 40 GHz transceiver module using LTCC technology", Microwave Integrated Circuit Conference, 2007. EUMIC 2007, European, pp. 555-558, Oct. 2007.
2 J. I. Ryu, D. Kim, and J. C. Kim, "Isolation effect between DC supply voltage signal lines in wireless LAN module", Electromagnetic Compatibility, 2009 20th International Zurich Symposium on, pp. 385-388, Jan. 2009.
3 S. Sakhnenko, D. Orlenko, K. Markov, A. Yatsenko, B. Vorotnikov, G. Sevskiy, P. Heide, and M. Vossiek, "Low profile LTCC balanced filter based on a lumped elements balun for WiMAX applications", Microwave Symposium Digest, 2008 IEEE MTT-S International, pp. 1111-1114, Jun. 2008.
4 G. L. Matthaei, L. Young, and E. M. T. Jones, Microwave Filters, Impedance-Matching Networks and Coupling Structures, McGraw Hill, pp. 497-506, 1964.
5 Lap K. Yeung, Ke-Li Wu, and Yuanxun E. Wang, "Low-temperature cofired ceramic LC filter for RF applications", IEEE Microwave Magazine, vol. 9, pp. 118-128, Oct. 2008.   DOI
6 K. Markov, S. Royak, G. Sevskiy, and P. Heide, "A simple LTCC balun for WLAN applications using Left-Handed(LH) Transmission Lines(TL)", Microwave Conference, 2005 EUMC 2005, European, Oct. 2005.
7 Ching-Wen Tang, "Desing methodologies of LTCC bandpass filters, diplexer, and triplexer with transmission zeros", IEEE Transactions on Microwave Theory and Techniques, vol. 54, pp. 717-723, Feb. 2006.   DOI
8 www.inventeksys.com
9 www.murata-ws.com
10 D. H. Kim, D. Kim, J. I. Ryu, J. C. Kim, J. C. Park, and C. D. Park, "A novel integrated Tx-Rx diplexer for dual-band WiMAX system", Microwave Symposium Digest, 2010 IEEE MTT-S International, pp. 1736-1739, May 2010.
11 J. I. Ryu, J. W. Moon, D. Kim, and J. C. Kim, "Implementation of the front-end module with a power amplifier for dual-band wireless LAN", Microwave Conference, 2009. EUMC 2009, European, pp. 1357-1360, Sep. 2009.
12 Y. H. Cho, J. W. Kim, and Y. H. Park, "An ultraminiaturized transceiver module for bluetooth applications using 3-D LTCC system-on-package technology", Microwave Symposium Digest, 2008 IEEE MTT-S International, pp. 1-4, Jun. 2008.
13 www.usi.com.tw