• Title/Summary/Keyword: 2.4GHZ 대역 응용

Search Result 121, Processing Time 0.021 seconds

Design and Fabrication of A Dual-band Open-Ended Circular Ring MoNopole Antenna for WLAN Applications (이중 공진을 갖는 WLAN용 끝이 개방된 원형 링 모노폴 안테나의 설계와 제작)

  • Yoon, Joong-Han
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.7
    • /
    • pp.987-994
    • /
    • 2013
  • In this paper, a dual-band open-ended circular ring moNopole antenna for WLAN(Wireless Local Area Networks) applications. The proposed antenna is based on a planar moNopole design, and composed of open-ended one circular ring of radiating patches for dual-band operation. To obtain the optimized parameters, we used the simulator, Ansoft's High Frequency Structure Simulator(HFSS) and found the parameters that effect antenna characteristics. Using the obtained parameters, the proposed antenna is fabricated. The fabricated antenna is measured at the operating frequencies(2.4-2.484 GHz, 5.15-5.825 GHz), and the return loss coefficient, gain, and radiation patterns are determined.

A Design of Balun BPF for 2.45GHz Band (2.45GHz 대역 Balun BPF의 설계)

  • Kim Myung-Chul;Jung Eul-Young;Ryu Jae-Su;Hwang Hee-Yong;Choi Kyoung;Jung Joong-Sung;Choi Se-Ha
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.3-5
    • /
    • 2004
  • Balanced input 단을 갖는 IC chip과의 interface를 위하여 2.4GHz 대역의 Balun BPF를 설계하였다. $2.4{\times}2.0 (mm)$ 크기의 LTCC chip 형태로 제작하기위하여 LPF-HPF 형태를 응용한 집중소자형 Balun을 설계하고 Comb-line 형태의 BPF를 접합하여 설계 및 시뮬레이션을 하였다. 시뮬레이션 결과 Balun BPF의 삽입손실은 3.03dB, 위상차는 $170^{\circ}$, Amplitude balance는 0.09dB이다.

  • PDF

The design of Horn array antenna for 28GHz millimeter wave band (28GHz 밀리미터파대역 혼 어레이 안테나 설계)

  • Jin, Duck-Ho;Lee, Je-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.11
    • /
    • pp.1672-1678
    • /
    • 2022
  • In this paper, the relay antenna was designed in consideration of the performance of the 28GHz band 5G mobile communication relay horn antenna, such as radiation pattern and return loss. A horn array for 5G mobile communication repeater was designed by arranging the antenna elements in phase, and the performance was analyzed. Unlike conventional WCDMA (3G) and LTE (4G), in millimeter wave band communication, high path loss occurs between transmission and reception. In the design of a 5G millimeter wave horn antenna, antenna performance such as isolation and gain between antenna elements as well as gain and bandwidth of the antenna must be additionally considered. The antenna gain of the single horn antenna (1×1) and the array horn antenna (2×4) in the 28GHz band is about 10.44d Bi and 19.58dBi, respectively, and the return loss is designed to be less than -18dB. It has proven its validity and has been shown to be suitable for application to 5G mobile communication relay system.

SOI CMOS Miniaturized Tunable Bandpass Filter with Two Transmission zeros for High Power Application (고 출력 응용을 위한 2개의 전송영점을 가지는 최소화된 SOI CMOS 가변 대역 통과 여파기)

  • Im, Dokyung;Im, Donggu
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.1
    • /
    • pp.174-179
    • /
    • 2013
  • This paper presents a capacitor loaded tunable bandpass chip filter using multiple split ring resonators (MSRRs) with two transmission zeros. To obtain high selectivity and minimize the chip size, asymmetric feed lines are adopted to make a pair of transmission zeros located on each side of passband. Compared with conventional filters using cross-coupling or source-load coupling techniques, the proposed filter uses only two resonators to achieve high selectivity through a pair of transmission zeros. In order to optimize selectivity and sensitivity (insertion loss) of the filter, the effect of the position of asymmetric feed line on transmission zeros and insertion loss is analyzed. The SOI-CMOS switched capacitor composed of metal-insulator-metal (MIM) capacitor and stacked-FETs is loaded at outer rings of MSRRs to tune passband frequency and handle high power signal up to +30 dBm. By turning on or off the gate of the transistors, the passband frequency can be shifted from 4GH to 5GHz. The proposed on-chip filter is implemented in 0.18-${\mu}m$ SOI CMOS technology that makes it possible to integrate high-Q passive devices and stacked-FETs. The designed filter shows miniaturized size of only $4mm{\times}2mm$ (i.e., $0.177{\lambda}g{\times}0.088{\lambda}g$), where ${\lambda}g$ denotes the guided wave length of the $50{\Omega}$ microstrip line at center frequency. The measured insertion loss (S21)is about 5.1dB and 6.9dB at 5.4GHz and 4.5GHz, respectively. The designed filter shows out-of-band rejection greater than 20dB at 500MHz offset from center frequency.

Design of High Efficiency Switching Mode Class E Power Amplifier and Transmitter for 2.45 GHz ISM Band (2.45 GHz ISM대역 고효율 스위칭모드 E급 전력증폭기 및 송신부 설계)

  • Go, Seok-Hyeon;Koo, Kyung-Heon
    • Journal of Advanced Navigation Technology
    • /
    • v.24 no.2
    • /
    • pp.107-114
    • /
    • 2020
  • A power amplifier of 2.4 GHz ISM band is designed to implement a transmitter system. High efficiency amplifiers can be implemented as class E or class F amplifiers. This study has designed a 20 W high efficiency class E amplifier that has simple circuit structure in order to utilize for the ISM band application. The impedance matching circuit was designed by class E design theory and circuit simulation. The designed amplifier has the output power of 44.2 dBm and the power added efficiency of 69% at 2.45 GHz. In order to apply 30 dBm input power to the designed power amplifier, voltage controlled oscillator (VCO) and driving amplifier have been fabricated for the input feeding circuit. The measurement of the power amplifier shows 43.2 dBm output and 65% power added efficiency. This study can be applied to the design of power amplifiers for various wireless communication systems such as wireless power transfer, radio jamming device and high power transmitter.

Design of a 48MHz~1675MHz Frequency Synthesizer for DTV Tuners (DTV 튜너를 위한 48MHz~1675MHz 주파수합성기 설계)

  • Ko, Seung-O;Seo, Hee-Teak;Kwon, Duck-Ki;Yu, Chong-Gun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.5
    • /
    • pp.1125-1134
    • /
    • 2011
  • In this paper a wideband frequency synthesizer is designed for DTV tuners using a $0.18{\mu}m$ CMOS process. It satisfies the DTV frequency band(48~1675MHz). A scheme is proposed to cover the full band using only one VCO and reliable broadband characteristics are achieved by reducing the variations of VCO gains and frequency steps. The simulation results show that the designed VCO has frequency range of 1.85~4.22GHz, phase noise at 4.22GHz of -89.7dBc/Hz@100kHz, gains of 62.4~95.8MHz/V(${\pm}21.0%$) and frequency steps of 22.9~47.9MHz(${\pm}35.3%$). The designed VCO has a phase noise of -89.75dBc/Hz at 100kHz offset. The designed synthesizer has a lock time less than $0.15{\mu}s$. The measured VCO tuning range is 2.05~3.4GHz. The frequency range is shifted down but still satisfy the target range owing to the design for enough margin. The designed circuit consumes 23~27mA from a 1.8V supply, and the chip size including PADs is $2.0mm{\times}1.5mm$.

Design and Fabrication of Modified Monopole Antenna for Wireless USB Dongle with WLAN system Applications (WLAN 시스템 적용 가능한 무선 USB 동글용 변형된 모노폴 안테나의 설계 및 제작)

  • Lee, Yeong-Seong;Mun, Seung-Min;Kim, Gi-Rae;Yoon, Joong-Han
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.10
    • /
    • pp.2223-2231
    • /
    • 2015
  • In this paper, we propose a built-in antenna for wireless USB dongle which has a modified structure from the existing planar monopole antenna. The proposed antenna implemented a dual-band characteristic by inserting Strip1, Strip2, Strip3 into the monopole structure combined with 'n' shape and feeded 50-Ω using coaxial cable. The antenna is designed on an FR-4 substrate of which the dielectric constant is 4.6, and its overall size is 10 mm × 50 mm × 1mm. Based on the measurement results of the return loss, it was confirmed to satisfy the dual band resonance characteristics of 740 MHz (2.3 ~ 2.7 GHz) and 1,200 MHz (5.15 ~ 5.825 GHz) by -10 dB. In addition, we obtain the omni-directional radiation pattern measurements in the operating frequency bands, and the maximum gain of the proposed antenna has 2.26~3.81 dBi in the 2.4 GHz band and 2.21~5.79 dBi. in the 5.5 GHz band, respectively.

A Low Power Consumption 2.4 GHz Transceiver MMIC (저전력소모2.4 GHz 송수신 MMIC)

  • 황인덕
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.5
    • /
    • pp.1-10
    • /
    • 1999
  • A low power concumption 2.4 GHz one-chip transceiver MMIC was designed and fabricated using $1.0\mu\textrm{m}$ ion-implantation MESFET process and packaged on a 24 lead SSOP. In the transmitter mode, it revealed conversion gain of 7.5 dB, output IP3 of -3.5 dBm, and noise figure of 3.9 dB at 2.44 GHz with 3.9 mA current consumption. In the receiver mode, it revealed voltage sensitivity of 6.5 mV/$\mu\$W with 2 .0 mA current consumption. Comparing the fabricated MMIC with the results of MMICs reported elsewhere, it was shown that the fabricated MMIC had good performance. The low power consumption 2.4 GHz transceiver MMIC is expected to be used for various applications such as wireless local area networks, wireless local loops and RFID tags in ISM-band.

  • PDF

Design of Wideband Low Pass Filter for Harmonic Suppression Applications (고조파 억제 응용을 위한 광대역 저역 통과 필터 설계)

  • Yeo, Junho;Lee, Jong-Ig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.1
    • /
    • pp.169-174
    • /
    • 2018
  • In this paper, a design method for a wideband LPF for harmonic suppression applications is investigated. The proposed wideband LPF is comprised of four circular slot pairs with different diameters, which are added symmetrically in the ground plane of a CPW transmission line. Four circular slot pairs act as a defected ground structure and provide a wideband low pass characteristic. The circular slot with the smallest diameter is located at the side of port 1, and the diameter of the circular slot is increased as it goes toward port 2. The low pass characteristics of each circular slot are compared with the proposed wideband LPF. The final designed LPF was fabricated on FR4 substrate, and its characteristics were tested. The measured S11 characteristic was maintained at over -3.3 dB in the frequency range of 1.89-20.00 GHz band, whereas the S21 characteristic was less than -21.4 dB in the frequency range of 2.66-20.00 GHz.

A FG-CPW Single Balanced Diode Mixer for C-Band Application (C-Band 용 FG-CPW 단일 평형 다이오드 혼합기)

  • Bae, Joung-Sun;Lee, Jong-Chul;Kim, Jong-Heon;Lee, Byung-Je;Kim, Nam-Young
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.339-345
    • /
    • 2001
  • In this paper, FG-CPW (Finite-Ground Coplanar Wave-Guide) balanced diode mixer is presented. Frequency bandwidth is selected for a C-band, which is 5.72~5.82 GHz for RF, 5.58~5.68 GHz for LO, and 140 MHz for IF signals. A rat-race hybrid is designed for the accomplishment of single balanced type. A low pass filter (LPF) with CPW structure is used far good conversion loss and unwanted harmonics suppression. When LO signal with the power of 4 dBm at 5.635 GHz is injected, a conversion loss of 6.2 dB is obtained for the mixer. Also, the LO to RF and LO to IF isolation of 30 dB and 40 dB are obtained, respectively. This mixer can be used in the area on wireless LAN application.

  • PDF