• Title/Summary/Keyword: 2-Phase Induction Motor

Search Result 196, Processing Time 0.034 seconds

Design of Premium Efficiency Level of single-Phase Induction Motor using Parameter Analysis (파라미터 해석을 통한 프리미엄급 단상 유도기 효율 설계)

  • Jang, Kwang-Yong;Kim, Kwang-Soo;Lee, Joong-Woo;Jang, Ik-Sang;Kim, Sol;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.672_673
    • /
    • 2009
  • In this paper seeks the parameter which relates with the efficiency from premium efficiency level single-phase induction motor. Also it compares with the parameters and it analyzes and an optimum parameter it seeks by FEM. Consquently, a optimal design is accomplished from the this paper. Also parameters compare efficiency. And it analyzes and studies about optimum parameter by FEM. The sample single-phase induction motor selection selected existing premium level motor. We analyze each parameter using 2-D finite element analysis (FEM). According to Study of losses and Design flow, losses and efficiency can be explain by many parameter. So this paper present optimal parameters. Finally, this paper presents the method which raises the efficiency of premium efficiency level single-phase induction motor.

  • PDF

Analysis of 3-phase Induction Motor considering Current Regulator using DQ Transformation with Matrix Vector

  • Hong, Sun-Ki;Na, Yoo-Chung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.3 no.2
    • /
    • pp.116-120
    • /
    • 2014
  • 3-phase Induction machines are being used in industry and dq transformation from 3 phase of a, b, c is commonly used to analyze these machines. The equivalent circuits of d and q axis are however generally cross coupled and not simple to analyze. In this study, an analysis method of 3ph induction motor considering current regulator using dq transformation and matrix vector is proposed and it can explain the 3ph induction motor physically. This model does not need the separating process of d and q components. With this technique, the model becomes simple, is easy to understand in physical, and can get the same results with those from the other dq models. These simulation results of the proposed model are compared with those of other models for the conformation of the proposed method.

FEA & Topology Optimization of Single-Phase Induction Motor for Rotary Compressor (로터리 컴프레서용 단상 유도모터의 유한요소해석 및 위상 최적설계)

  • Kang, Je-Nam;Wang, Se-Myung
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.623-625
    • /
    • 2001
  • The nonlinear transient characteristic of single-phase induction motor for rotary compressor is analysed by using FLUX2D. And the topology optimization is investigated and the TOPEM (Topology Optimization for Electromagnetic Systems) is developed using the finite element method (FEM). The proposed method is validated by applying it to the topology optimizations of single-phase induction motor for reducing the oil circulation rate (OCR).

  • PDF

Genetic Algorithm Based Design Optimization of a Six Phase Induction Motor

  • Fazlipour, Z.;Kianinezhad, R.;Razaz, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.1007-1014
    • /
    • 2015
  • An optimally designed six-phase induction motor (6PIM) is compared with an initial design induction motor having the same ratings. The Genetic Algorithm (GA) method is used for optimization and multi objective function is considered. Comparison of the optimum design with the initial design reveals that better performance can be obtained by a simple optimization method. Also in this paper each design of 6PIM, is simulated by MAXWELL_2D. The obtained simulation results are compared in order to find the most suitable solution for the specified application, considering the influence of each design upon the motor performance. Construction a 6PIM based on the information obtained from GA method has been done. Quality parameters of the designed motors, such as: efficiency, power losses and power factor measured and optimal design has been evaluated. Laboratory tests have proven the correctness of optimal design.

Fuzzy Logic Speed Controller of 3-Phase Induction Motors for Efficiency Improvement

  • Abdelkarim, Emad;Ahmed, Mahrous;Orabi, Mohamed;Mutschler, Peter
    • Journal of Power Electronics
    • /
    • v.12 no.2
    • /
    • pp.305-316
    • /
    • 2012
  • The paper presents an accurate loss model based controller of an induction motor to calculate the optimal air gap flux. The model includes copper losses, iron losses, harmonic losses, friction and windage losses, and stray losses. These losses are represented as a function of the air gap flux. By using the calculated optimal air gap flux compared with rated flux for speed sensorless indirect vector controlled induction motor, an improvement in motor efficiency is achieved. The motor speed performance is improved using a fuzzy logic speed controller instead of a PI controller. The fuzzy logic speed controller was simulated using the fuzzy control interface block of MATLAB/SIMULINK program. The control algorithm is experimentally tested within a PC under RTAI-Linux. The simulation and experimental results show the improvement in motor efficiency and speed performance.

The Modified Direct Torque Control System for Five-Phase Induction Motor Drives (5상 유도전동기 구동을 위한 수정된 직접 토크제어 시스템)

  • Kim, Min-Huei;Kim, Nom-Hun;Baik, Won-Sik
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.23 no.2
    • /
    • pp.138-147
    • /
    • 2009
  • In this paper, improved direct torque control(DTC) system for five-phase squirrel-cage induction motor(IM) is proposed. Due to the additional degrees of freedom, five-phase 1M drives present unique characteristics. Also five-phase motor drives possess many other advantages compared with the traditional three-phase motor drive system, such as reducing an amplitude of torque pulsation and increasing the reliability. The DTC method is advantageous when it is applied to the five-phase IM, because the five-phase inverter provides 32 space vectors in comparison to 8 space voltage vectors into the three-phase inverter. However, five-phase motor has structural drawback of 3rd space-harmonics current component, it is necessary to controlled 3rd harmonic current. So to control 3rd harmonic current and enhance dynamic characteristics of five-phase squirrel-cage IM drive, modified DTC method should be demanded. The characteristics and dynamic performance of traditional five-phase DTC are analyzed and new DTC for five-phase IM is presented. A more precise flux and torque control algorithm for the drives can be suggested and explained For presenting the superior performance of the proposed direct torque control, experimental results are presented using a 32-[bit] fixed point TMS320F2812 digital signal processor with 2.2[kW] induction motor.

Study on the Fire Risk in Locked-Rotor Condition of Single-Phase Induction Motor (단상 유도전동기의 구속운전조건에서 화재 위험성에 관한 연구)

  • Ji, Hong-Keun;Song, Jae-Yong
    • Fire Science and Engineering
    • /
    • v.34 no.2
    • /
    • pp.64-71
    • /
    • 2020
  • In this paper, the fire risk of a single-phase induction motor under a locked-rotor condition is described. In general, motor failure occurs in the locked-rotor condition owing to poor rotation of the rotor. Large inrush current flows when a motor starts, which is approximately 2-15 times larger than the rated current. In a single-phase induction motor under the locked-rotor condition, a large current that corresponds to the inrush current flows continuously through the stator winding. Such an overcurrent rises the temperature inside the stator winding, and thus the insulating material may catch fire. In this study, the restrained operating condition of the single-phase induction motor was simulated. Further, the degree of the overcurrent and temperature rise in the stator winding was measured. The experimental results, confirmed that the overcurrent was seven times larger than the rated current and the fire commenced at a temperature of approximately 300 ℃ inside the stator winding.

A Novel PWM Method for Three-Leg Two-Phase Inverter Fed Two-Phase Induction Motor (2상 유도전동기 구동 2상 인버터를 위한 새로운 PWM제어방식 II - 3-레그 타입의 경우 -)

  • Jang Do-Hyun
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.10 no.4
    • /
    • pp.339-346
    • /
    • 2005
  • It is complex to realize the reference voltage vector by the space vector PWM method in three-leg two-phase inverter In this paper a new PWM technique for three-leg two-phase inverter fed two-phase induction motor is poroposed assuming that three-leg two-phase inverter is equivalent circuit for 'four-leg two-phase inverter with the connected two windings'. From assumption, six sectors are decreased to four sectors, and simple sinusoidal PWM method instead of SVPWM is applied to three-leg two-phase inverter. Also, the switching pattern to determine the switching periods at each sector is proposed. Practical verification of theoretical predictions is presented to confirm the capabilities of the new techniques.

Study on single/three phase converter for motor applications of rural district (농어촌 동력용 전동기구를 위한 단상/3상변환기의 개발에 관한 연구)

  • 황영문;조철제
    • 전기의세계
    • /
    • v.25 no.4
    • /
    • pp.68-72
    • /
    • 1976
  • This study is initiated to solve the problem that the development of an electric machine to drive heavy horse-power load required in the rural district, where only single phase supply is available, is very urgent. As a method for this purpose, the single/three phase converter by single phase induction machine with a tapped auxiliary winding, running unloaded mechanically under single-phase source and supplying three-phase output to a loaded 3-phase induction motor, is devised and the pilot machine is put into test. Analysis based on hybrid equivalent circuit for the phase converter and symmertical component theory for the 3-phase load motor and practical experiment result in that optimum auxiliary winding ratio is to be 1.25 rather than theoretical .root.3/2 in order to keep the voltage unbalance ratio of 3-phase output from the converter as low as possible in both cases of starting and running the load motor.

  • PDF

High Performance Adjustable-Speed Induction Motor Drive System Incorporating Sensorless Vector Controlled PWM Inverter with Auto-Tuning Machine-Operated Parameter Estimation Schemes

  • Soshin, Koji;Okamura, Yukiniko;Ahmed, Tarek;Nakaoka, Mutsuo
    • Journal of Power Electronics
    • /
    • v.3 no.2
    • /
    • pp.99-114
    • /
    • 2003
  • This paper presents a feasible development on a highly accurate quick response adjustable speed drive implementation fur general purpose induction motor which operates on the basis of sensorless slip frequency type vector controlled sine-wave PWM inverter with an automatic tuning machine parameter estimation schemes. In the first place, the sensorless vector control theory on the three-phase voltage source-fed inverter induction motor drive system is developed in slip frequency based vector control principle. In particular, the essential procedure and considerations to measure and estimate the exact stator and rotor circuit parameters of general purpose induction motor are discussed under its operating conditions. The speed regulation characteristics of induction motor operated by the three-phase voltage-fed type current controlled PWM inverter using IGBT's is illustrated and evaluated fur machine parameter variations under the actual conditions of low frequency and high frequency operations for the load torque. In the second place, the variable speed induction motor drive system, employing sensorless vector control scheme which is based on three -phase high frequency carrier PWM inverter with automatic toning estimation schemes of the temperature -dependent and -independent machine circuit parameters, is practically implemented using DSP-based controller. Finally, the dynamic speed response performances for largely changed load torque disturbances as well as steady state speed vs. torque characteristics of this induction motor control implementation are illustrated and discussed from an experimental point of view.