• Title/Summary/Keyword: 2-D shape

Search Result 2,501, Processing Time 0.033 seconds

Grip Force, Finger Force, and Comfort analyses of Young and Old People by Hand Tool Handle Shapes (수공구 손잡이 형태에 따른 청.노년층의 악력과 손가락 힘 및 편안함 분석)

  • Kong, Yong-Ku;Sohn, Seong-Tae;Kim, Dae-Min;Jung, Myung-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.27-34
    • /
    • 2009
  • The purpose of this study was to evaluate aging (young and old), gender (male and female), and handle shape effects on grip force, finger force, and subjective comfort. Four handle shapes of A, D, I, and V were implemented by a multi-finger force measurement (MFFM) system which was developed to measure every finger force with different grip spans. Forty young (20 males and 20 females) and forty old (20 males and 20 females) subjects participated in twelve gripping tasks and rated their comfort for all handles using a 5-point scale. Grip forces were calculating by summation of all four forces of the index, middle, ring and little fingers. Results showed that young males (283.2N) had larger gripping force than old males (235.6N), while young females (151.4N) had lower force than old females (153.6N). Young subjects exerted the largest gripping force with D-shape due to large contribution of the index and middle fingers and the smallest with A-shape; however, old subjects exerted the largest with I-shape and the smallest with V-shape due to small contribution of the ring and little fingers. As expected, the middle finger had the largest finger force and the little finger had the smallest. The fraction of contribution of index and ring fingers to grip force differed among age groups. Interestingly, young subjects provided larger index finger force than ring finger force, whereas old subjects showed that larger ring finger forces than index finger force in the griping tasks. In the relationship between performance and subjective comfort, I-shape exerting the largest grip force had less comfort than D-shape producing the second largest grip force. The findings of this study can provide guidelines on designing hand tool handle to obtain better performance as well as users' comfort.

3-D Model Reconstruction from Three Orthogonal Views Based on Merging Technique of RP Codes (RP 코드 합성을 기반으로 한 세 방향 영상에서의 삼차원 모델의 복원)

  • 박순용;진성일
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.31B no.4
    • /
    • pp.106-114
    • /
    • 1994
  • A new merging technique is adopted for combining rectangular parallelepipes produced by 2-D rectangular code into more intuitive 30D volume elements. Rectangular parallelepiped codes (RP codes) can be used in volume-based representation of a three-dimensional object. We proposed more regularity-conserving 2-D rectangular coding scheme to merge rectangular cells represented by RP codes in three-dimensional space. After being constructed from modified 2-D rectangular code, 3-D RP codes are merged in the two orthogonal directions using new merging algorithm. The shape of merged 3-D object reconstructed by proposed algorithm is shown to be much closer to the original object shape than that of conventional RP codes. The storage requirement of merged object can be also reduced.

  • PDF

Layered Pattern Authentication Scheme on Smartphone Resistant to Social Engineering Attacks (사회공학적 공격에 강인한 스마트폰 계층화 패턴 인증 기법)

  • Tak, Dongkil;Choi, Dongmin
    • Journal of Korea Multimedia Society
    • /
    • v.19 no.2
    • /
    • pp.280-290
    • /
    • 2016
  • In this paper, we propose a layered pattern authentication scheme resistant to social engineering attacks. Existing android pattern lock scheme has some weak points for social engineering attacks. Thus, the proposed scheme improves the existing pattern lock scheme. In our scheme, pattern is recorded by touch screen, however, it is different with existing schemes because of the layered pattern. During the pattern registration process, users register their own pattern with many layers. Thus, registered pattern is 3D shape. When the smudge attack is occurring, the attacker can see the shape of user pattern through the smudge on smartphone screen. However, it is described on 2D surface, so acquired pattern is not fully determine to users original 3D shape. Therefore, our scheme is resistant to social engineering attack, especially smudge attack.

2D Shape Recognition System Using Fuzzy Weighted Mean by Statistical Information

  • Woo, Young-Woon;Han, Soo-Whan
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2009.01a
    • /
    • pp.49-54
    • /
    • 2009
  • A fuzzy weighted mean method on a 2D shape recognition system is introduced in this paper. The bispectrum based on third order cumulant is applied to the contour sequence of each image for the extraction of a feature vector. This bispectral feature vector, which is invariant to shape translation, rotation and scale, represents a 2D planar image. However, to obtain the best performance, it should be considered certain criterion on the calculation of weights for the fuzzy weighted mean method. Therefore, a new method to calculate weights using means by differences of feature values and their variances with the maximum distance from differences of feature values. is developed. In the experiments, the recognition results with fifteen dimensional bispectral feature vectors, which are extracted from 11.808 aircraft images based on eight different styles of reference images, are compared and analyzed.

  • PDF

The Flame Characteristics by Combustion Chamber Shape in 2 Stroke D.I. Diesel Engine -The Influence of Scavenging Pressure and Scavenging Temperature- (직접분사식 2행정 디젤기관의 연소실 형상에 따른 화염 특성 -소기압력 및 소기온도의 영향을 중심으로-)

  • 최익수;방중철
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.1
    • /
    • pp.55-63
    • /
    • 2003
  • In a diesel engine, air-fuel mixture formation and ignition delay period have great influence on the performance of engine. Their main factors are combustion chamber shape, fuel injection system. air volume, air flow and so on. So, the combustion process in the cylinder is complex because of many factors which have direct and indirect effects on it. In this study, we take into consideration of scavenging pressure and scavenging temperature that are hewn as the main factor to the combustion process of two-stroke D.1. diesel engine. It is taken a picture of the combustion flame process for combustion chamber of re-entrant type and cylindrical type. So, it is applied to the basis data of combustion chamber design from an image analysis.

Elastodynamic infinite elements based on modified Bessel shape functions, applicable in the finite element method

  • Kazakov, K.S.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.3
    • /
    • pp.353-362
    • /
    • 2012
  • In this paper decay and mapped elastodynamic infinite elements, based on modified Bessel shape functions and appropriate for Soil-Structure Interaction problems are described and discussed. These elements can be treated as a new form of the recently proposed Elastodynamic Infinite Elements with United Shape Functions (EIEUSF) infinite elements. The formulation of 2D horizontal type infinite elements (HIE) is demonstrated, but by similar techniques 2D vertical (VIE) and 2D corner (CIE) infinite elements can also be formulated. It is demonstrated that the application of the elastodynamical infinite elements is the easier and appropriate way to achieve an adequate simulation including basic aspects of Soil-Structure Interaction. Continuity along the artificial boundary (the line between finite and infinite elements) is discussed as well and the application of the proposed elastodynamical infinite elements in the Finite Element Method is explained in brief. Finally, a numerical example shows the computational efficiency of the proposed infinite elements.

Inspection for Large 2D machining product using robot vision (로봇비젼을 이용한 대형 2차원 가공물의 검사)

  • 정병묵;이성건;조지승
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.177-180
    • /
    • 2002
  • Generally, it is very difficult to inspect geometric shape of large 2D objects after machining. To maintain the accuracy for inspection, a robot vision is used to divide overall shape into several enlarged images, and image processing technique is applied to acquire one minute geometric contour. The inspection is to compare the NC data with the measured contour data by the vision system, and the algorithm is to rotate to minimize the maximum deviation coinciding two geometric centers. This paper experimentally shows that the proposed inspection algorithm is very useful fur a large machined object.

  • PDF

Flow/Heat Transfer Analysis and Shape Optimization of a Heat Exchanger with Internally Finned Tube (내부휜이 부착된 원형관 열교환기의 열/유동 해석 및 최적설계)

  • Lee Juhee;Lee Sanghwan;Lim Hyo-Jae;Park Kyoungwoo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.4 s.235
    • /
    • pp.460-468
    • /
    • 2005
  • Analyses of flow and heat transfer characteristics and shape optimization of internally finned circular tubes have been performed for three-dimensional periodically fully developed turbulent flow and heat transfer. CFD and mathematical optimization are coupled in order to optimize the shape of heat exchanger. The design variables such as fin widths $(d_{1},\;d_{2})$ and fin height (h) are numerically optimized by minimizing the pressure loss and maximizing the heat transfer rate for limiting conditions of $d_{1}=0.2\~1.5\;mm,\;d_{2}=0.2\~1.5\;mm,$ and $h=0.2\~1.5mm$. Due to the periodic boundary conditions along main flow direction, the three layers of meshes are considered. The flow and thermal fields are predicted using the finite volume method and the optimization is carried out by means of the sequential quadratic programming (SQP) method which is widely used in the constrained nonlinear optimization problem.

3D Vision Inspection Algorithm using Geometrical Pattern Matching Method (기하학적 패턴 매칭을 이용한 3차원 비전 검사 알고리즘)

  • 정철진;허경무;김장기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.1
    • /
    • pp.54-59
    • /
    • 2004
  • We suggest a 3D vision inspection algorithm which is based on the external shape feature. Because many electronic parts have the regular shape, if we have the database of pattern and can recognize the object using the database of the object s pattern, we can inspect many types of electronic parts. Our proposed algorithm uses the geometrical pattern matching method and 3D database on the electronic parts. We applied our suggested algorithm fer inspecting several objects including typical IC and capacitor. Through the experiments, we could find that our suggested algorithm is more effective and more robust to the inspection environment(rotation angle, light source, etc.) than conventional 2D inspection methods. We also compared our suggested algorithm with the feature space trajectory method.

Analysis of Terminal Velocity, Drag Coefficient and Shape of Bubble Rising in High Viscous Fluid (고점도 유체 내에서 부양하는 거품의 종말속도, 항력계수, 형태 분석)

  • Kim, Jin Hyun;Kim, Jung Hyeun
    • Korean Chemical Engineering Research
    • /
    • v.48 no.4
    • /
    • pp.462-469
    • /
    • 2010
  • Gas-liquid 2 phase processes are usually used in chemical, biochemical, environmental engineering and food process. For optimizing these processes, understanding bubble's precise movement and shape are needed. Bubble's movement and shape are effected by liquid's properties-viscosity, surface tension and bubble's properties-size, velocity. This paper deals with experimental data of bubble's movement and shape in high viscous silicone oil. Also, drag coefficient and deformation factor given by other researcher's papers and books are used to predicting and comparing bubble's terminal velocity, drag coefficient, deformation factor and shape with experimental value. Experimental data show that bubble moves faster when it moves in lower viscous silicone oil and it's drag coefficient is bigger when it moves in high viscous silicone oil. Bubble's shape is close to sphere when moving in high viscous silicone. Formulas proposed by Batchelor expect most accurate prediction for bubble's velocity and drag coefficient. Bubble's 2D shape predicted by Batchelor's energy balance, drag coefficient and deformation factor show excellent agreement with experimental bubble's 2D shape.