• Title/Summary/Keyword: 2 degrees of freedom

Search Result 411, Processing Time 0.024 seconds

Piecewise exact solution for seismic mitigation analysis of bridges equipped with sliding-type isolators

  • Tsai, C.S.;Lin, Yung-Chang;Chen, Wen-Shin;Chiang, Tsu-Cheng;Chen, Bo-Jen
    • Structural Engineering and Mechanics
    • /
    • v.35 no.2
    • /
    • pp.205-215
    • /
    • 2010
  • Recently, earthquake proof technology has been widely applied to both new and existing structures and bridges. The analysis of bridge systems equipped with structural control devices, which possess large degrees of freedom and nonlinear characteristics, is a result in time-consuming task. Therefore, a piecewise exact solution is proposed in this study to simplify the seismic mitigation analysis process for bridge systems equipped with sliding-type isolators. In this study, the simplified system having two degrees of freedom, to reasonably represent the large number of degrees of freedom of a bridge, and is modeled to obtain a piecewise exact solution for system responses during earthquakes. Simultaneously, we used the nonlinear finite element computer program to analyze the bridge responses and verify the accuracy of the proposed piecewise exact solution for bridge systems equipped with sliding-type isolators. The conclusions derived by comparing the results obtained from the piecewise exact solution and nonlinear finite element analysis reveal that the proposed solution not only simplifies the calculation process but also provides highly accurate seismic responses of isolated bridges under earthquakes.

Nonlinear Vibration Model of Ball Bearing Waviness in a Rigid Rotor Supported by Multi-Row Ball Bearing Considering Five Degrees of Freedom (다수의 각접촉 볼베어링으로 지지된 5자유도 회전계에서 볼베어링의 Waviness에 의해 발생하는 비선형진동 해석모델)

  • 정성원;장건희
    • Journal of KSNVE
    • /
    • v.11 no.2
    • /
    • pp.336-345
    • /
    • 2001
  • This research presents a nonlinear model to analyze the ball bearing nitration due to the waviness in a rigid rotor supported by multi-row ball bearings. The waviness of a ball and each races is modeled by the superposition of sinusoidal function, and the position vectors of inner and outer groove radius center are defined with respect to the mass center of the rotor in order to consider five degrees of freedom of a general rotor-bearing system. The waviness of a ball bearing is introduced to these position vectors to use the Hertzian contact theory in order to calculate the elastic deflection and nonlinear contact force resulting from the waviness while the rotor has translational and angular motion. They can be determined by solving the nonlinear equations of motion with five degrees of freedom by using the Runge-Kutta-Fehlberg algorithm. Numerical results of this research are validated with those of prior researchers. The proposed model can calculate the translational displacement as well as the angular displacement of the rotor supported by the multi-row ball bearings with waviness. It also characterizes the nitration frequencies resulting from the various kinds of waviness in rolling elements, the harmonic frequencies resulting from the nonlinear load-deflection characteristics of ball bearing. and the sideband frequencies resulting from the waviness interaction.

  • PDF

Design of the Position Control System for Parabolic Antenna using Gyro Sensor (자이로센서를 이용한 파라볼릭 안테나의 위치제어시스템 설계)

  • Kim, Myeong Kyun;Kim, Jin Soo;Yang, Oh
    • Journal of the Semiconductor & Display Technology
    • /
    • v.12 no.2
    • /
    • pp.85-91
    • /
    • 2013
  • In this paper, the parabolic antenna aims to the precise location of a moving ship or car that can be designed system using the gyro sensor. The parabolic antenna has controlled by stepping motor that is a lot of noise and slow response of speed. It has solved the problem which is noise and slow response using the BLDC motor. Also, in order to suppress the noise two-axis control and a separate encoder to the six degrees of freedom motion system was implemented in a precise location. Generally, the gyro sensor is not required to system that doesn't move the six degrees of freedom motion system. But the system will be applied to the moving such as ships or cars. Finally, we presented the position control algorithm at the sometimes controlled both gyro sensor and BLDC motor. This system was tracking that the location of the antenna to the desired angle and errors almost didn't happen when the system was moved 6 degrees of freedom.

Degrees of Freedom of Multi-Cell MIMO Interference Broadcast Channels With Distributed Base Stations

  • Huang, Hongbing;Liu, Junyi;Zhang, Yi;Cai, Qing;Zhang, Bowei;Jiang, Fengwen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.2
    • /
    • pp.635-656
    • /
    • 2019
  • In this paper, we investigate the degrees of freedom (DoF) of a multi-cell multi-user multiple-input multiple-output (MIMO) interference broadcast channel (IBC) with non-cooperation distributed base stations (BS), where each BS serves users of its corresponding cell. When all BSs simultaneously transmit their own signals over the same frequency band in the MIMO IBC, the edge users in each cell will suffer the inter-cell interference (ICI) and inter-user interference (IUI) signals. In order to eliminate the ICI and IUI signals, a distributed space time interference alignment (DSTIA) approach is proposed where each BS has only limited access to distributed moderately-delay channel state information at the transmitter (CSIT). It is shown that the DSTIA scheme can obtain the appreciate DoF gains. In addition, the DoF upper bound is asymptotically achievable as the number of antenna at each BS increases. It is shown that the DSTIA method can get DoF gains over other interference alignment schemes with delayed CSIT in literature. Moreover, the DSTIA method can attain higher DoFs than the IA schemes with global CSIT for certain antenna configurations.

Direct approximations for t percentage points (t 분포 퍼센트점의 직접근사공식)

  • 김현철;송규문;허문렬
    • The Korean Journal of Applied Statistics
    • /
    • v.2 no.1
    • /
    • pp.48-53
    • /
    • 1989
  • In contrast to the customary approximations based on standard normal percentage points, direct approximations involve simple functions of parameters (such as degrees of freedom and tail area of the t distributions). This article used techniques of exploratory data analysis following Hoaglin to develop direct approximations for percentage points in the commonly used portions of upper tail of the t distribution with small to moderate numbers of degrees of freedom. These approximations are convenient to use and they compare favorably in accuracy with the popular approximations based on standard normal percentage points such as Peiser's. They can be used as an initial value generator in algorithms for getting more accurate percentage points.

Development of a Bellows Finite Element for the Analysis of Piping System (배관시스템 해석을 위한 벨로우즈 유한요소의 개발)

  • 고병갑;박경진;이완익
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.6
    • /
    • pp.1439-1450
    • /
    • 1995
  • Bellows is a familiar component in piping systems as it provides a relatively simple means of absorbing thermal expansion and providing system flexibility. In routine piping flexibility analysis by finite element methods, bellows is usually considered to be straight pipe runs modified by an appropriate flexibility factor; maximum stresses are evaluated using a corresponding stress concentration factor. The aim of this study is to develop a bellows finite element, which similarly includes more complex shell type deformation patterns. This element also does not require flexibility or stress factors, but evaluates more detailed deformation and stress patterns. The proposed bellows element is a 3-D, 2-noded line element, with three degrees of freedom per node and no bending. It is formulated by including additional 'internal' degrees of freedom to account for the deformation of the bellows corrugation; specifically a quarter toroidal section of the bellows, loaded by axial force, is considered and the shell type deformation of this is include by way of an approximating trigonometric series. The stiffness of each half bellows section may be found by minimising the potential energy of the section for a chosen deformation shape function. An experiment on the flexibility is performed to verify the reliability for bellows finite element.

Implementation of the two-degree-of freedom PID Position Controller for Linear Motor Drive with Easy Gain Adjustment (이득 설계가 간단한 선형전동기 2자유도 PID 위치제어기 구현)

  • Ha, Hong-Gon;Lee, Chang-Ho
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.8 no.2
    • /
    • pp.124-129
    • /
    • 2007
  • Recently, the application of the linear machine for industrial field is remarkably increased, especially for the gantry machine, machine tool system and CNC. However a linear meter remains the vibrational characteristic itself therefore, In these application fields, high position control performance is essentially required in both the steady and the transient states. In this paper, the design method for a position control is proposed by using the two-degree-of freedom PID controller. This method has great features for the linear machine drives such as no over-shoot phenomena and single gain tuning strategy. By comparison with conventional PID controller, the improvement of performance of a linear motor control system using two degrees of freedom controller are discussed. Through the simulation results, the usefulness of the proposed algorithm is proved. With the simulation results, it was made clear that the introduction of two degrees of freedom controller designed by the proposed method not only improves the over shoot and starting characteristic of response but also removes the undesirable characteristic variation.

  • PDF

Decoupled Neural Network Reference Compensation Technique for a PD Controlled Two Degrees-of-Freedom Inverted Pendulum

  • Seul Jung;Cho, Hyun-Taek
    • International Journal of Control, Automation, and Systems
    • /
    • v.2 no.1
    • /
    • pp.92-99
    • /
    • 2004
  • In this paper, the decoupled neural network reference compensation technique (DRCT) is applied to the control of a two degrees-of-freedom inverted pendulum mounted on an x-y table. Neural networks are used as auxiliary controllers for both the x axis and y axis of the PD controlled inverted pendulum. The DRCT method known to compensate for uncertainties at the trajectory level is used to control both the angle of a pendulum and the position of a cart simultaneously. Implementation of an on-line neural network learning algorithm has been implemented on the DSP board of the dSpace DSP system. Experimental studies have shown successful balancing of a pendulum on an x-y plane and good position control under external disturbances as well.

Two rectangular elements based on analytical functions

  • Rezaiee-Pajand, Mohammad;Karimipour, Arash
    • Advances in Computational Design
    • /
    • v.5 no.2
    • /
    • pp.147-175
    • /
    • 2020
  • To achieve appropriate stresses, two new rectangular elements are presented in this study. For reaching this aim, a complementary energy functional is used within an element for the analysis of plane problems. In this energy form, the Airy stress function will be used as a functional variable. Besides, some basic analytical solutions are found for the stress functions. These trial functions are matched with each element number of degrees of freedom, which leads to a number of equations with the anonymous constants. Subsequently, according to the principle of minimum complementary energy, the unknown constants can be expressed in terms of displacements. This system can be rewritten in terms of the nodal displacement. In this way, two new hybrid-rectangular triangular elements are formulated, which have 16 and 40 degrees of freedom. To validate the outcomes, extensive numerical studies are performed. All findings clearly demonstrate accuracies of structural displacements, as well as, stresses.

Parametric study of piled raft for three load-patterns

  • Sawant, V.A.;Pawar, S.V.;Ladhane, K.B.
    • Coupled systems mechanics
    • /
    • v.1 no.2
    • /
    • pp.115-131
    • /
    • 2012
  • Paper presents an improved solution algorithm based on Finite Element Method to analyse piled raft foundation. Piles are modelled as beam elements with soil springs. Finite element analysis of raft is based on the classical theory of thick plates resting on Winkler foundation that accounts for the transverse shear deformation of the plate. Four node, isoparametric rectangular elements with three degrees of freedom per node are considered in the development of finite element formulation. Independent bilinear shape functions are assumed for displacement and rotational degrees of freedom. Effect of raft thickness, soil modulus and load pattern on the response is considered. Significant improvement in the settlements and moments in the raft is observed.