• Title/Summary/Keyword: 2상 분무

Search Result 122, Processing Time 0.021 seconds

The Experimental Study on the Lift-off Height due to Momentum Ratio in Swirl-Coaxial Injector (2유체 동축인젝터의 공급 운동량비가 화염부상거리에 미치는 영향에 관한 실험적 연구)

  • Moon, I.Y.;Kim, Y.;Park, H.H.;Kim, S.J.
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.1
    • /
    • pp.30-35
    • /
    • 2000
  • The experimental study on the lift-off height of diffusion flames was conducted to investigate the damage of swirl-coaxial injector used in $GO_2$/kerosene rocket engine during initial stage of ignition. To investigate the causes of damage and to prevent further damage of the injector, experimental injector was designed and hot fire tests were performed with varying propellant momentum ratio($\frac{Momentum of {GO_2}}{Momentum of Kerosene}$) from 1 to 12. In experimental coaxial injector, kerosene is sprayed from the central nozzle with swirl and $GO_2$ sprayed around the kerosene nozzle in the direction parallel to the axis of combustion chamber. Chamber pressure are close to the atmospheric condition. Lift-off height was measured by still images from camcoder and average values were used as data.

  • PDF

Morphology and Crystal Orientation of Mg Films formed on Hot Dip Galvanized Steel by PVD Method at Ar or N2 Gas Pressures and Their Corrosion Resistances (Ar 및 N2 가스압 중에서 PVD법에 의해 용융아연 도금 강재상 형성한 Mg 막의 모폴로지 및 결정배향성과 그 내식성)

  • Hwang, Seong-Hwa;Park, Jae-Hyeok;Park, Jun-Mu;Choe, In-Hye;Kim, Sun-Ho;Lee, Myeong-Hun
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2017.05a
    • /
    • pp.166-166
    • /
    • 2017
  • 금속 재료 중 철강은 기계적 특성이 우수하고 대량생산이 가능하여 선박, 건축, 자동차 등 다양한 분야에 기초재료로써 널리 사용되고 있다. 그러나 스테인리스강 등과 같은 일부 특수한 용도의 강을 제외하고는 부식환경에 취약한 특성을 가지기 때문에 내식성을 향상을 위한 표면처리에 관한 연구가 활발히 진행되고 있다. 가장 일반적으로 습식법(wet process)을 통해 표면상에 아연(Zn)을 도금해 사용하며, 아연이 자체적으로 포함한 희생양극(sacrificial anode) 및 차폐(barrier) 효과가 철강의 부식을 방지하게 된다. 하지만 산업의 고도화에 따라 더욱 가혹해진 노출환경으로 인해 고내식 강재에 대한 수요가 점차 증가하고 있으며, 아연코팅 층의 두께를 증가하여 내식성을 확보하는 방안은 미래 환경 및 자원적인 측면에서 근본적인 해결책으로 제시하기 어려움이 있다. 한편, 건식 프로세스(wet process)로 대별되는 PVD(physical vacuum deposition)에 의해 내식성을 향상시키고자 하는 연구들이 다양하게 진행되고 있다. 이것은 표면에 고순도 양질의 금속 막을 형성시킴으로써 외부환경과의 반응을 효과적으로 제어가 가능하며, 형성된 막은 그 물질의 고유 특성뿐만 아니라 제작 조건에 따른 표면의 기하학적 혹은 결정학적 구조에 의해 크게 영향을 받게 된다. 본 연구에서는 실용금속 중 이온화 경향이 가장 크고 산소와 반응하여 투과성이 작은 산화 피막 형성이 유리한 마그네슘(Mg)을 활용해 표면의 전기화학적 특성을 향상시켰다. 또한 금속 증착 중 진공도조절을 위해 도입되는 불활성 가스로 아르곤(Ar) 및 질소($N_2$)를 사용하여 표면에 형성한 막의 모폴로지 및 결정배향성이 내식성에 미치는 상관관계를 해석하고자 하였다. 실험방법으로 PVD법 중 비교적 간편하고 기초적인 지침을 제시하기 적합할 것으로 고려된 진공증착(vacuum evaporation)법을 이용해 아르곤 및 질소 분위기에서 진공도를 조절하며 용융아연도금상 Mg막을 형성하였다. 제작조건별 막의 기초 특성을 분석하기위해 SEM, EDS, XRD를 이용하였고, 결정배향성(crystal orientation) 분석을 위해 면간격(d-value)과 상대강도(relative intensity)를 확인하였다. 또한 내식성 평가로 염수분무(salt sprat test) 및 양극분극(anode polarization)을 각각 실시하였다. 실험결과에 따르면, Ar 및 $N_2$ 모두에서 가스압이 증가할수록 코팅층의 증착량은 적어지고 입상정(granular structure)의 모폴로지 형성 및 면간격과 상대강도가 증가하는 것이 확인되었다. 또한 쳄버 내 동일 진공도에서, $N_2$ 도입 시 Mg막은 더욱 치밀하고 미세한 입상정의 모폴로지로 형성되며 면간격과 상대강도는 더욱 증가한 것으로 나타났다. 내식성 평가에서 저진공 $N_2$ 조건에서 형성시킨 막이 가장 우수한 내식성이 나타났는데, 이는 상대적으로 불안정하고 반응하기 유리한 입계면적을 많이 포함한 입상정 모폴로지 및 표면에너지가 높은면의 면점유율 증가로 인해 외부환경과의 신속한 반응은 물론 안정적인 피막형성이 용이하였기 때문일 것으로 사료된다. 이상으로 Ar 및 $N_2$ 가스압 조건에 따른 고내식 Mg 막의 유효성을 확인하였고 향후 내식성을 향상시키는 방법으로 응용 가능할 것으로 생각된다.

  • PDF

Apparent Densification Rate and Initial Permeability of NiCuZn Ferrite Depended on Relative Packing Density (NiCuZn Ferrite의 겉보기 고화속도와 초기투자율의 충진율 의존성에 관한 연구)

  • 류병환;이정민;고재천
    • Resources Recycling
    • /
    • v.7 no.4
    • /
    • pp.27-34
    • /
    • 1998
  • In this research, the processing control of NiCuZn Ferrite (NCZF) had been studied. NiCuZn Ferrite, which calcined at $700^{\circ}C$ for 3 bours, was ball milled for about 60 hours to ill김ke a size of $0.5\mu\;extrm{m}$ followed by granulation using spray dryer Apparent densincatioo rate and initial permeability of NiCuZn Ferrite with an initial packing density had been investigated as f follows. 1.The relative packing density of NCZF green body increas$\xi$d in the range of 48.6-56.8% with an increased forming pressure of 20-170 MPa. 2. The higher the relative pac퍼ng density of NCZF and the sintering temperature are, the higher the initial densification rate. The increased bulk rlcnsity of NCZF was attributed to the densification rate with decreased open pore and increased closed pore as the relative packing density, sintering temperature, and sinteriog tim$\xi$ increased. 3. The initial P permeability of NCZF with constant composition is logarithmically proportional to the bulk density of NCZF sintered at $875~925^{\circ}C$ for 0-5h, and strongly depended on the relative packing density of NCZF green body. The empirical equation is as f follows; log $\mu$i=$G1{\times}BD$+$G2{\times}RPD$+b(0);where, G1, G2; gradient, B.D: bulk density, RPD; relative packing density, b(0); intercept.

  • PDF

An Etiological Study on the Anthracnose Fungus of Pepper Caused by Colletotrichum dematium in Korea (고추에서 분리(分離)한 탄저병균(炭疽病菌) Colletotrichum dematium에 대한 병원학적(病原學的) 연구(硏究))

  • Chung, Bong-Koo;Chang, Sun-Hwa
    • The Korean Journal of Mycology
    • /
    • v.12 no.4
    • /
    • pp.153-157
    • /
    • 1984
  • In order to investigate an etiological characteristics of the pepper anthracnose fungus infected with Collectotrichum dematium, this experiment was undertaken. Isolation percent of the fungus was 55.3% from the seed sample of Jewon and 0.3% from that of Eumsung Kun, according to seed health blotter method. Although the acervulus was similar to the known two Colletotricum species, C. acutatum and C. gloeosporioides, setae was not only straightly extended above the acervulus, but also shaped as falcate conidia ranging $12{\sim}31.2{\times}2.4{\sim}4.8{\mu}m$. Acervului of the fungus were evenly scattered on the surface of pepper seed coat, and caused seedling blight after seed germination. Pre-and post-emergence seedling blight as well as foliar lesion and fruit rot was confirmed by inoculating conidial suspension. No typical anthracnose sysmptom was obtained from soybean seedlings, welsch onion and spinach seedlings upon inoculation. Therefore, this fungus is said to the undescribed form species of the fungus of pepper in Korea (Colletotricum dematium f. sp. capsicum).

  • PDF

Environment-Friendly Control of Cucumber Downy Mildew Using Chlorine Dioxide (이산화염소수를 활용한 오이 노균병 친환경방제)

  • Kim, Byung-Ryun;Hahm, Soo-Sang;Kwon, Mi-Kyung;Kim, Yun-Jeong;Kim, Woon-Seop;Song, Jeong-Young;Oh, Sang-Keun;Ju, Jung-Il
    • Research in Plant Disease
    • /
    • v.27 no.4
    • /
    • pp.149-154
    • /
    • 2021
  • Pseudoperonospora cubensis (downy mildew) is highly virulent to various Cucurbitaceae crops, including cucumber (Cucumis sativus). We tested chlorine dioxide application in a plastic greenhouse for environment-friendly control of downy mildew disease. Spraying diluted chlorine dioxide suppressed downy mildew disease with 41.2% control efficacy. Thermal fogging with chlorine dioxide had a high control efficacy of 80.9%, confirming that this approach is useful for environment-friendly downy mildew control. Using thermal fogging to control diseases that are greatly affected by humidity, such as downy mildew, may be more effective compared with conventional dilution spray control methods.

A Study on the Effect of Sulfur Content in Fuel Oil on the Emission of Air Pollutants According to Operating Conditions of Small Ship Engines (선박용 소형 엔진에서 연료유 내 황 함유량이 운전 조건에 따라 대기오염물질 배출에 미치는 영향에 관한 연구)

  • Lee, Kyeong-yeol;Rho, Beom-seok;Lee, Won-Ju;Choi, Jae-hyuk
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.24 no.6
    • /
    • pp.834-840
    • /
    • 2018
  • In this study, the characteristics of air pollutant emissions from ships' engines have been investigated by conducting E2 and E3 cycle mode tests. A engine 360Ps (Doosan L126TIH engine) and 400kW dynamometer Horiba-Schenck were utilized for engine tests. The FTIR analyzer and SPC were used to measure exhaust gas (NOx, SOx etc.) and PM (particulate matter), respectively. The results showed that the emissions of THC and CO produced from engine were increased with the increase of sulfur content in fuel oils at E2 and E3 cycle modes. The kinetic viscosity of the fuel increased as the sulfur content of the fuel increased, thereby the specific fuel oil consumption (SFC) of the engine improved. This result is considered to be due to improved combustion conditions due to increased average diameters of sprayed particles and due to increased kinetic viscosity under constant fuel injection pressure in this study. In the case of NOx emission, this study showed no significant change in amount of sulfur content.

Development of Mobile Vortex Wet Scrubber and Evaluation of Gas Removal Efficiency (기체상 유해화학물질 제거를 위한 이동형 와류식 세정장치 개발 및 가스 제거효율 분석)

  • Kwak, Ji Hyun;Hwang, Seung-Ryul;Lee, Yeon-Hee;Kim, Jae-Young;Song, Ki Bong;Kim, Kyun;Kang, Jae Eun;Lee, Sang Jae;Jeon, Junho;Lee, Jin Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.34 no.2
    • /
    • pp.134-138
    • /
    • 2015
  • BACKGROUND: In recent years, several researchers have focused on odour control methods to remove the harmful chemicals from chemical accidents and incidents. The present work deals with the system development of the hazardous. METHODS AND RESULTS: For on-site removal of hazardous gaseous materials from chemical accidents, mobile vortex wet scrubber was designed with water vortex process to absorb the gas into the water. The efficiency of the mobile vortex wet scrubber was evaluated using water spray and 25% ammonia solution. The inlet air velocity (gas flow rate) was according to the damper angle installed within the hood and with increase of gas flow rate, consequently the absorption efficiency was markedly decreased. In particular, when 25% ammonia solution was exposed to the hood inlet for 30 min, the water pH within the scrubber was changed from 7 to 12. Interestingly, although the removal efficiency of ammonia gas exhibited approximately 80% for 5 min, its efficiency in 10 min showed the greatest decrease with 18%. Therefore, our results suggest that the ammonia gas may be absorbed with the driving force of scrubbing water in water vortex process of this scrubber. CONCLUSION: When chemical accidents are occurred, the designed compact scrubber may be utilized as effective tool regarding removal of ammonia gas and other volatile organic compounds in the scene of an accident.

On the Behavior of Liquid Droplets Depending upon ALR in Two-phase Internal Mixing Nozzle Jet (2상 내부 혼합형 노즐분사에서 ALR 변화에 따른 액적의 거동)

  • Kim Kyu Chul;Namkung Jung Hwan;Lee Sang Jin;Rho Byung Joon
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.385-388
    • /
    • 2002
  • The researches of a two-phase atomizers have been carried out in the field of automotive and aerospace industries in order to improve the atomization performance of the liquid droplets ejecting from these nozzles. The smaller droplets have the advantages of the reduction of environmental pollution matter and effective use of energy through the improvement of heat and mass transfer efficiency. Thus, to propose the basic information of two-phase flow, an internal mixing atomizer was designed, its shape factor was 0.6 and the liquid feeding hole was positioned at the center of the mixing tube which was used to mix the air and liquid. The experimental work was performed in the field after the nozzle exit orifice. The measurement of the liquid droplets was made by PDPA system. This system can measure the velocity and size of the droplets simultaneously. The number of the droplets used in this calculation was set to 10,000. The flow patterns were regulated by ALR (Air to Liquid mass Ratio). ALR was varied from 0.1024 to 0.3238 depending on the mass flow rate of the air. The analysis of sampling data was mainly focused on the spray characteristics such as flow characteristics distributions, half-width of spray, RMS, and turbulent kinetic energy with ALR.

  • PDF

Investigation on Diesel Injection Characteristics of Natural Gas-Diesel Dual Fuel Engine for Stable Combustion and Efficiency Improvement Under 50% Load Condition (천연가스-디젤 혼소 엔진의 50% 부하 조건에서 제동효율 및 연소안정성 개선을 위한 디젤 분무 특성 평가)

  • Oh, Sechul;Oh, Junho;Jang, Hyungjun;Lee, Jeongwoo;Lee, Seokhwan;Lee, Sunyoup;Kim, Changgi
    • Journal of the Korean Institute of Gas
    • /
    • v.26 no.3
    • /
    • pp.45-53
    • /
    • 2022
  • In order to improve the emission of diesel engines, natural gas-diesel dual fuel combustion compression ignition engines are in the spotlight. In particular, a reactivity controlled compression ignition (RCCI) combustion strategy is investigated comprehensively due to its possibility to improve both efficiency and emissions. With advanced diesel direct injection timing earlier than TDC, it achieves spontaneous reaction with overall lean mixture from a homogeneous mixture in the entire cylinder area, reducing nitrogen oxides (NOx) and particulate matter (PM) and improving braking heat efficiency at the same time. However, there is a disadvantage in that the amount of incomplete combustion increases in a low load region with a relatively small amount of fuel-air. To solve this, sensitive control according to the diesel injection timing and fuel ratio is required. In this study, experiments were conducted to improve efficiency and exhaust emissions of the natural gas-diesel dual fuel engine at low load, and evaluate combustion stability according to the diesel injection timing at the operation point for power generation. A 6 L-class commercial diesel engine was used for the experiment which was conducted under a 50% load range (~50 kW) at 1,800 rpm. Two injectors with different spray patterns were applied to the experiment, and the fraction of natural gas and diesel injection timing were selected as main parameters. Based on the experimental results, it was confirmed that the brake thermal efficiency increased by up to 1.3%p in the modified injector with the narrow-angle injection added. In addition, the spray pattern of the modified injector was suitable for premixed combustion, increasing operable range in consideration of combustion instability, torque reduction, and emissions level under Tier-V level (0.4 g/kWh for NOx).

Study on Characteristic of CO2 Hydrate Formation Using Micro-sized Ice (미세직경 얼음을 이용한 CO2 하이드레이트 제조특성 연구)

  • Lee, Jong-Hyub;Kang, Seong-Pil
    • Korean Chemical Engineering Research
    • /
    • v.50 no.4
    • /
    • pp.690-695
    • /
    • 2012
  • Gas hydrate is an inclusion compound consisting of water and low molecular weight gases, which are incorporated into the lattice structure of water. Owing to its promising aspect to application technologies, gas hydrate has been widely studied recently, especially $CO_2$ hydrate for the CCS (Carbon Capture and Storage) issue. The key point of $CO_2$ hydrate technology for the CCS is how to produce gas hydrate in an efficient and economic way. In this study, we have tried to study the characteristic of gas hydrate formation using micro-sized ice through an ultrasonic nozzle which generate 2.4 MHz frequency wave. $CO_2$ as a carrier gas brings micro-sized mist into low-temperature reactor, where the mist and carrier gas forms $CO_2$ hydrate under $-55^{\circ}C$ and atmospheric pressure condition and some part of the mist also remains unreacted micro-sized ice. Formed gas hydrate was average 10.7 of diameter at average. The starting ice particle was set to constant pressure to form $CO_2$ hydrate and the consumed amount of $CO_2$ gas was simultaneously measured to calculate the conversion of ice into gas hydrate. Results showed that the gas hydrate formation was highly suitable because of its extremely high gas-solid contact area, and the formation rate was also very high. Self-preservation effect of $CO_2$ hydrate was confirmed by the measurement of $CO_2$ hydrate powder at normal and at pressed state, which resulted that this kind of gas storage and transport could be feasible using $CO_2$ hydrate formation.