Browse > Article
http://dx.doi.org/10.5423/RPD.2021.27.4.149

Environment-Friendly Control of Cucumber Downy Mildew Using Chlorine Dioxide  

Kim, Byung-Ryun (Chungnam Agricultural Research and Extension Services)
Hahm, Soo-Sang (Chungnam Agricultural Research and Extension Services)
Kwon, Mi-Kyung (Chungnam Agricultural Research and Extension Services)
Kim, Yun-Jeong (Chungnam Agricultural Research and Extension Services)
Kim, Woon-Seop (Chungnam Agricultural Research and Extension Services)
Song, Jeong-Young (YoungBio Lab.)
Oh, Sang-Keun (Department of Applied Biology, Chungnam National University)
Ju, Jung-Il (Chungnam Agricultural Research and Extension Services)
Publication Information
Research in Plant Disease / v.27, no.4, 2021 , pp. 149-154 More about this Journal
Abstract
Pseudoperonospora cubensis (downy mildew) is highly virulent to various Cucurbitaceae crops, including cucumber (Cucumis sativus). We tested chlorine dioxide application in a plastic greenhouse for environment-friendly control of downy mildew disease. Spraying diluted chlorine dioxide suppressed downy mildew disease with 41.2% control efficacy. Thermal fogging with chlorine dioxide had a high control efficacy of 80.9%, confirming that this approach is useful for environment-friendly downy mildew control. Using thermal fogging to control diseases that are greatly affected by humidity, such as downy mildew, may be more effective compared with conventional dilution spray control methods.
Keywords
Chlorine dioxide; Downy mildew; Environment-friendly control; Pseudoperonospora cubensis; Thermal fogging;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
연도 인용수 순위
1 Lee, S. Moon, H.-K., Lee, S.-W., Moon, J.-N., Lee, S.-H. and Kim, J.-K. 2013b. Enhanced antimicrobial effectiveness of Omija (Schizamdra chinesis Baillon) by ClO2 (chlorine dioxide) treatment. Korean J. Food Preserv. 20: 871-876. (In Korean)   DOI
2 Lebeda, A. and Cohen, Y. 2012. Fungicide resistance in Pseudoperonospora cubensis, the causal pathogen of cucurbit downy mildew. In: Fungicide Resistance in Crop Protection: Risk and Management, ed, by T. S. Thind, pp. 44-63. CABI, Wallingford, UK.
3 Sun, S., Lian, S., Feng, S., Dong, X., Wang, C., Li, B. et al. 2017. Effects of temperature and moisture on sporulation and infection by Pseudoperonospora cubensis. Plant Dis. 101: 562-567.   DOI
4 Sun, X., Bai, J., Ference, C., Wang, Z., Zhang, Y., Narciso, J. et al. 2014. Antimicrobial activity of controlled-release chlorine dioxide gas on fresh blueberries. J. Food Prot. 77: 1127-1132.   DOI
5 Urban, J. and Lebeda, A. 2006. Fungicide resistance in cucurbit downy mildew: methodological, biological and population aspects. Ann. Appl. Biol. 149: 63-75.   DOI
6 Lee, S. Y., Weon, H. Y., Kim, J. J. and Han, J. H. 2013d. Selection of Bacillus amyloliquefaciens CC110 for biological control of cucumber downy mildew caused by Pseudoperonospora cubensis. Korean J. Mycol. 41: 261-267. (In Korean)   DOI
7 Mahovic, M. J., Tenney, J. D. and Bartz, J. A. 2007. Applications of chlorine dioxide gas for control of bacterial soft rot in tomatoes. Plant Dis. 91: 1316-1320.   DOI
8 National Institute of Agricultural Sciences. 2018. Pesticide Registration Test: Pesticide Efficacy and Crop Safety Guidelines, Fungicide Section. National Institute of Agricultural Sciences, Wanju, Korea, pp. 423-425.
9 Meng, R., Han, X. Y., Wu, J., Zhao, J. J., Lu, F. and Wang, W. Q. 2017. Resistance dynamics of Pseudoperonospora cubensis to metalaxyl and azoxystrobin and control efficacy of seven fungicides against cucumber downy mildew in Hebei Province. J. Plant Prot. 44: 849-855.
10 Ministry of Agriculture, Food and Rural Affairs. 2020. The Numerical Statement of Agriculture. Food and Rural Affairs, Sejong, Korea, pp. 98-99.
11 Park, J.-W., Kim, Y.-K., Park, S.-H., Hong, S.-J., Shim, C.-K., Kim, M.-J. et al. 2016. Effect of organic materials and the removal of apical shoot on controlling cucumber downy mildew. Korean J. Org. Agric. 24: 919-929. (In Korean)   DOI
12 Park, S.-D., Kwon, T. Y., Lim, Y.-S., Jung, K. C. and Choi, B.-S. 1996. Disease survey in melon, watermelon, and cucumber with different successive cropping periods under vinylhouse conditions. Korean J. Plant Pathol. 12: 428-431. (In Korean)
13 Park, S. S., Sung, J. M., Jeong, J. W., Park, K. J. and Lim, J. H. 2012. Efficacy of electrolyzed water and aqueous chlorine dioxide for reducing pathogenic microorganism on Chinese cabbage. Korean J. Food Sci. Technol. 44: 240-246.   DOI
14 Choi, S., Beuchat, L. R., Kim, H. and Ryu, J. H. 2016. Viability of sprout seeds as affected by treatment with aqueous chlorine dioxide and dry heat, and reduction of Escherichia coli O157: H7 and Salmonella enterica on pak choi seeds by sequential treatment with chlorine dioxide, drying, and dry heat. Food Microbiol. 54: 127-132.   DOI
15 Roberts, R. G. 1994. Integrating biological control into postharvest disease management strategies. Hortic. Sci. 29: 758-762.
16 Ryu, S.-H. 2007. Effects of aqueous chlorine dioxide against Escherichia coli O157:H7 and Listeria monocytogenes on broccoli served in foodservice institutions. J. Korean Soc. Food Sci. Nutr. 36: 1622-1627. (In Korean)   DOI
17 Zhao, X., Ren, L., Yin, H., Zhou, J., Han, J. and Luo, Y. 2012. Sensitivity of Pseudoperonospora cubensis to dimethomorph, metalaxyl and fosetyl-aluminium in Shanxi of China. Crop Prot. 43: 38-44.   DOI
18 Yao, K.-S., Hsieh, Y.-H., Chang, Y.-J., Chang, C.-Y., Cheng, T.-C. and Liao, H.-L. 2010. Inactivation effect of chlorine dioxide on phytopathogenic bacteria in irrigation water. J. Environ. Eng. Manage. 20: 157-160.
19 Benarde, M. A., Israel, B. M., Olivieri, V. P. and Granstrom, M. L. 1965. Efficiency of chlorine dioxide as a bactericide. Appl. Microbiol. 13: 776-780.   DOI
20 Chang, T. H., Lim, T. H., Kim, I. Y., Choi, G. J., Kim, J.-C., Kim, H. T. et al. 2000. Effect of phosphorous acid on control of phytophthora blight of red-pepper and tomato, and downy mildew of cucumber in the greenhouse. Korean J. Pestic. Sci. 4: 64-70. (In Korean)
21 Han, Y., Linton, R. H., Nielsen, S. S. and Nelson, P. E. 2001. Reduction of Listeria monocytogenes on green peppers (Capsicum annuum L.) by gaseous and aqueous chlorine dioxide and water washing and its growth at 7℃. J. Food Prot. 64: 1730-1738.   DOI
22 Kim, M.-H., Kim, Y.-J., Kim, K.-S., Song, Y.-B., Seo, W.-J., and Song, K. B., 2009. Microbial changes in hot peppers, ginger, and carrots treated with aqueous chlorine dioxide or fumaric acid. Korean J. Food Preserv. 16: 1013-1017. (In Korean)
23 R Core Team. 2017. R foundation for statistical computing ver. 3.4.0. R Foundation for Statistical Computing, Vienna, Austria.
24 Chen, Z., Zhu, C., Zhang, Y., Niu, D. and Du, J. 2010. Effects of aqueous chlorine dioxide treatment on enzymatic browning and shelf-life of fresh-cut asparagus lettuce (Lactuca sativa L.). Postharvest Biol. Technol. 58: 232-238.   DOI
25 Kim, G. H., Park, J. Y., Cha, J. H., Jeon, C. S., Hong, S. J., Kim, Y. H., et al. 2011. Control effect of major fungal diseases of cucumber by mixing of biofungicides registered for control of powdery mildew with other control agents. Korean J. Pestic. Sci. 15: 323-328. (In Korean)
26 Korean Society of Plant Pathology. 2009. List of Plant Disease in Korea. 5th ed. The Korean Society of Plant Pathology, Suwon, Korea. 853 pp.
27 Kim, Y.-K., Ryu, J.-D., Ryu, J.-G., Lee, S. Y. and Shim, H.-S. 2003. Control of downey mildew occurred on cucumber cultivated under plastic film house condition by optimal application of chemical and installation of ventilation fan. Korean J. Pestic. Sci. 7: 223-227. (In Korean)
28 Choi, G.-J., Yu, J.-H., Jang, K.-S., Kim, H.-T., Kim, J.-C. and Cho, K.-Y. 2004. In vivo antifungal activities of surfactants against tomato late blight, red pepper blight, and cucumber downy mildew. J. Korean Soc. Appl. Biol. Chem. 47: 339-343. (In Korean)
29 Kim, Y.-K. Park, S.-H., Um, D.-O., Hong, S.-J., Cho, J.-L., Ahn, N.-H. et al. 2018. Control of cucumber downy mildew using resistant cultivars and organic materials. Res. Plant Dis. 24: 153-161. (In Korean)   DOI
30 National Agricultural Products Quality Management Service. 2021. List of Organic Materials. National Agricultural Products Quality Management Service, Gimcheon, Korea.
31 Lee, J.-S., Han, K.-S., Lee, S.-C. and Soh, J.-W. 2013a. Screening for resistance to downy mildew among major commercial cucumber varieties. Res. Plant Dis. 19: 188-195. (In Korean)   DOI
32 Mari, M., Bertolini, P. and Pratella, G. C. 2003. Non-conventional methods for the control of post-harvest pear diseases. J. Appl. Microbiol. 94: 761-766.   DOI
33 Savory, E. A., Granke, L. L., Quesada-Ocampo, L. M., Varbanova, M., Hausbeck, M. K. and Day, B. 2011. The cucurbit downy mildew pathogen Pseudoperonospora cubensis. Mol. Plant Pathol. 12: 217-226.   DOI
34 Lee, S. Y., Weon, H. Y., Kim, J. J. and Han, J. H. 2013c. Cultural characteristics and mechanism of Bacillus amyloliquefacien subsp. plantarum CC110 for biological control of cucumber downy mildew. Korean J. Pestic. Sci. 17: 428-434. (In Korean)   DOI
35 Sharma, D. R., Gupta, S. K. and Shyam, K. R. 2003. Studies on downy mildew of cucumber caused by Pseudoperonospora cubensis and its management. J. Mycol. Plant Pathol. 33: 246-251.