• Title/Summary/Keyword: 1H-NMR spectroscopy

Search Result 576, Processing Time 0.021 seconds

A Green Preparation of Drug Loaded PAc-β-CD Nanoparticles from Supercritical Fluid (초임계 유체를 이용한 약물이 담지된 PAc-β-CD 나노 입자의 친환경적인 제조)

  • Jang, Min Ki;Kim, Yong Hun;Kim, Dong Woo;Lee, Si Yun;Lim, Kwon Taek
    • Clean Technology
    • /
    • v.26 no.1
    • /
    • pp.1-6
    • /
    • 2020
  • Rapid expansion of supercritical solution (RESS) process was used to make molsidomine (MOL) loaded peracetyl-β-cyclodextrin (PAc-β-CD) nanoparticles, which were collected into the air. The effect of the concentration of the drug PAc-β-CD (0.5 and 1 wt%), extraction temperature (45 ~ 60 ℃), nozzle length (5 ~ 20 mm) and internal diameter (ID) (50 ~ 150 μm) of a capillary, and spray distance on the particle size and morphology of the resulting particles were investigated. The interaction of a drug and PAc-β-CD was confirmed by 1H-NMR spectroscopy while the particle size was measured by means of a scanning electron microscope. It was found that increasing the temperature from 45 ℃ to 60 ℃ and decreasing the nozzle diameter from 150 μm to 50 μm had an increasing effect on the average particle size, while increasing the spray distance led to a decrease in the average particle size at a constant pressure of 34.5 MPa and temperature of 45 ℃. With 0.5 wt% of PAc-β-CD, the capillary nozzle of short length (5 mm) and small ID (50 μm) gave the smallest size (165 nm). The obtained nanoparticles showed increased dispersity and solubility in oil. The oil suspension of the inclusion complex showed increased sustainability, which can increase the in-vitro controlled release time of the drug.

DNA Binding Studies and Cytotoxicity of the Novel 1,10-phenanthroline Palladium(II) Complexes of Dithiocarbamate Derivatives (디티오카르바메이트 유도체의 새로운 1,10-페난트롤린 팔라디움(II) 착물의 DNA 결합 성질 및 세포독성에 관한 연구)

  • Mansouri-Torshizi, Hassan;Saeidifar, Maryam;Ghasemi, Zahra Yekke;Khastan, Mahmood;Divsalar, Adeleh;Saboury, Ali Akbar
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.70-80
    • /
    • 2011
  • Two new palladium (II) complexes, [Pd (phen)(pip-dtc)]$NO_3$ and [Pd(phen)(mor-dtc)]$NO_3$, (where phen is 1,10-Phenantroline, pip-dtc is piperidinedithiocarbamate anion and mor-dtc is morpholinedithiocarbamate anion) have been synthesized and characterized by elemental analysis, spectroscopic studies (FT-IR, $^1H$ NMR, UV-Vis) and conductance measurement. In these complexes, the dithiocarbamate ligands coordinate with Pd (II) center as bidentate with two sulfur atoms. These two complexes have been tested against chronic myelogenous leukemia cell line, K562. They show $IC_{50}$ values less than cisplatin and thus the mode of binding of the complexes to calf thymus DNA (CT-DNA) were investigated by ultraviolet difference and fluorescence spectroscopy. They can denature DNA, exhibit cooperative binding and intercalate into DNA. Several binding and thermodynamic parameters are also described.

Comparison of the Binding Modes of [Ru(2,2'-bipyridine)3]2+ and [Ru(2,2':6',2"-terpyridine)2]2+ to Native DNA

  • Jang, Yoon-Jung;Lee, Hyun-Mee;Jang, Kyeung-Joo;Lee, Jae-Cheol;Kim, Seog-K.;Cho, Tae-Sub
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.5
    • /
    • pp.1314-1318
    • /
    • 2010
  • The $[Ru(tpy)_2]Cl_2$ (tpy:2,2':6',2"-terpyridine) complex was synthesized and its structure was confirmed by $^1H$-NMR and elemental analysis. Its binding mode toward DNA was compared with the well-known $[Ru(bpy)_3]Cl_2$ (bpy:2,2-bipyridyl), using isotropic absorption, linear dichroism(LD) spectroscopy, and an energy minimization study. Compared to $[Ru(bpy)_3]^{2+}$, the $[Ru(tpy)_2]^{2+}$ complex exhibited very little change in its absorption pattern, especially in the MLCT band, upon binding to DNA. Furthermore, upon DNA binding, both Ru(II) complexes induced a decrease in the LD magnitude in the DNA absorption region. The $[Ru(tpy)_2]^{2+}$ complex produced a strong positive LD signal in the ligand absorption region, which is in contrast with the $[Ru(bpy)_3]^{2+}$ complex. Observed spectral properties led to the conclusion that the interaction between the ligands and DNA bases is negligible for the $[Ru(tpy)_2]^{2+}$ complex, although it formed an adduct with DNA. This conclusion implies that both complexes bind to the surface of DNA, most likely to negatively charged phosphate groups via a simple electrostatic interaction, thereby orienting to exhibit the LD signal. The energy minimization calculation also supported this conclusion.

Synthesis and Lubricant Properties of Vegetable Oil based on Estolides (식물유 기반 에스토라이드 합성 및 윤활 특성)

  • Son, Jeong-Mae;Kim, Nam-Kyun;Shin, Jihoon;Chung, Kunwo;Yoon, Byung-Tae;Kim, Young-Wun
    • Tribology and Lubricants
    • /
    • v.31 no.5
    • /
    • pp.195-204
    • /
    • 2015
  • Several researches are focused on improving the value of fine chemicals based on biomass resources due to environmental and other concerns associated with the use of petroleum-based products. Therefore, the synthesis and application of estolides derived from plant-based waste oil materials and their application as lubricants and as processing oil for butyl rubber products have been studied. Four kinds of estolide were prepared with conversions of 71~92% over 24h using various vegetable oils, as determined by size exclusion chromatography (SEC) and nuclear magnetic resonance (NMR) spectroscopy. FT-IR spectroscopy determines the esterification of estolides using 2-ethylhexyl alcohol. The estolides have iodine values of 35~90, α-ester/α-acid ratios of 0.45~0.55, and total acid number of 114~134 mg KOH g–1. Four ball wear tests show that the wear scar diameters (WSDs) of estolides as base oil significantly decreased to 0.328~0.494 mm, compared to WSDs of 0.735 and 0.810 mm of WSD for 150N and Yubase 6, respectively, as general base oil. Thus, the estolides have better wear resistance and satisfying design objectives for the engineering of a variety of lubricant base oils.

In situ Gel Forming Stereocomplex Composed of Four-Arm PEG-PDLA and PEG-PLLA Block Copolymers

  • Jun, Yeo-Jin;Park, Kyung-Min;Joung, Yoon-Ki;Park, Ki-Dong;Lee, Seung-Jin
    • Macromolecular Research
    • /
    • v.16 no.8
    • /
    • pp.704-710
    • /
    • 2008
  • Injectable hydrogels are quite promising materials due to their potential to minimize invasive implantation and this provides versatile fitness irrespective of the damaged regions and facilitates the incorporation of bioactive agents or cells. In situ gel formation through stereocomplex formation is a promising candidate for injectable hydrogels. In this paper, a new series of enantiomeric, four-arm, PEG-PLA block copolymers and their stereocomplexed hydrogels were prepared by bulk ring-opening polymerization of D-lactide and L-lactide, respectively, with stannous octoate as a catalyst. The prepared polymers were characterized by $^1H$ nuclear magnetic resonance (NMR) spectroscopy, Fourier-transform infrared (FT IR) spectroscopy, gel permeation chromatography (GPC) and thermal gravitational analysis (TGA), confirming the tailored structure and chain lengths. The swelling and degradation behavior of the hydrogels formed from a selected copolymer series were observed in different concentrations. The degradation rate decreased with increasing polymer content in the solution. The rheological behavior indicated that the prepared hydrogel underwent in situ gelation and had favorable mechanical strength. In addition, its feasibility as an injectable scaffold was evaluated using a media dependence test for cell culture. A Tris solution was more favorable for in situ gel formation than PBS and DMEM solutions were. These results demonstrated the in situ formation of hydrogel through the construction of a stereocomplex with enantiomeric, 4-arm, PEG-PLA copolymers. Overall, enantiomeric, 4-arm, PEG-PLA copolymers are a new species of stereocomplexed hydrogels that are suitable for further research into injectable hydrogels.

Polystyrene-b-poly(oligo(ethylene oxide) Monomethyl Ether Methacrylate)-b-polystyrene Triblock Copolymers as Potential Carriers for Hydrophobic Drugs

  • You, Qianqian;Chang, Haibo;Guo, Qipeng;Zhang, Yudong;Zhang, Puyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.558-564
    • /
    • 2013
  • A simple and effective method is introduced to synthesize a series of polystyrene-b-poly(oligo(ethylene oxide) monomethyl ether methacrylate)-b-polystyrene (PSt-b-POEOMA-b-PSt) triblock copolymers. The structures of PSt-b-POEOMA-b-PSt copolymers were characterized by Fourier-transform infrared spectroscopy (FTIR) and nuclear magnetic resonance ($^1H$ NMR) spectroscopy. The molecular weight and molecular weight distribution of the copolymer were measured by gel permeation chromatography (GPC). Furthermore, the self-assembling and drug-loaded behaviours of three different ratios of PSt-b-POEOMA-b-PSt were studied. These copolymers could readily self-assemble into micelles in aqueous solution. The vitamin E-loaded copolymer micelles were produced by the dialysis method. The micelle size and core-shell structure of the block copolymer micelles and the drug-loaded micelles were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The thermal properties of the copolymer micelles before and after drug-loaded were investigated by different scanning calorimetry (DSC). The results show that the micelle size is slightly increased with increasing the content of hydrophobic segments and the micelles are still core-shell spherical structures after drug-loaded. Moreover, the glass transition temperature (Tg) of polystyrene is reduced after the drug loaded. The drug loading content (DLC) of the copolymer micelles is 70%-80% by ultraviolet (UV) photolithography analysis. These properties indicate the micelles self-assembled from PSt-b-POEOMA-b-PSt copolymers would have potential as carriers for the encapsulation of hydrophobic drugs.

Mixed Intramolecular Hydrogen Bonding in Dihydroxythiophene-based Units and Boron and Technetium Chelation

  • Ko, Sang-won;Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Jun-seong;Kim, Min-Jeong;Kwak, Yeon-ju;Do, Young-kyu;Churchill, David G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2006
  • Three novel potential metal ion chelating units have been synthesized and characterized: 5-hexylcarbamoyl-3,4-dihydroxythiophene-2-carboxylic acid methyl ester (5), 3-benzyloxy-4-hydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (6), and 3,4-dihydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (7). The crystal structure of 6 was obtained and suggests the presence of three distinct intramolecular hydrogen bonds, namely $[N_{amide}-H{\cdot}{\cdot}{\cdot}O]$ $[O-H{\cdot}{\cdot}{\cdot}O_{amide}]$ and $[N_{amide}-H{\cdot}{\cdot}{\cdot}S]$. Boron chelation with 5, 6 and 7 through the use of $BF_3, \;B(OH)_3 \;or \;B(OMe)_3$ was probed by $^1H$, $^{11}B$, and $^{13}C$ NMR spectroscopy. Technetium (I) chelation with 5, 6 and 7 was also studied via HPLC elutions using $[^{99m}Tc(CO)_3(OH_2)_3]^+$.

Falcarindiol, a Polyacetylenic Compound Isolated from Peucedanum japonicum, Inhibits Mammalian DNA Topoisomerase I

  • Lee, Gwang;Park, Hyoung-Gun;Choi, Mi-Lim;Kim, Young-Ho;Park, Yong-Bok;Song, Kyung-Sik;Cheong, Chaejoon;Bae, Young-Seuk
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.3
    • /
    • pp.394-398
    • /
    • 2000
  • A methanol extract of the root of Peucedanum japonicum, used as a medicinal herb, showed an inhibitory effect on mammalian topoisomerase I activity. The methanol extract was suspended in ethyl acetate, and a topoisomerase I inhibitor in the organic soluble fraction was then isolated by silica gel and thin layer chromatography. The topoisomerase I inhibitory compound was indentified as falcarindiol based on the analysis of EI-MS, $^1$H and \ulcornerC NMR spectroscopy. This inhibitory showed cytotoxicity against human leukemia Jurkat T and HL60 cells with an IC\ulcorner value of 7 $\mu\textrm{g}$/ml. These results suggest the possibility of falcarindiol as a new anticancer agent which can be expected to have a synergistic effect on other anticancer drugs. In addition, the present data show that falcarindiol has antifungal, yet not antibacterial, activity.

  • PDF

Lipoxygenase Inhibition and Antioxidative Activity of Flavonoids from Paeonia moutan Seeds

  • Kim, Hyo-Jin;Chung, Shin-Kyo;Park, Sang-won
    • Preventive Nutrition and Food Science
    • /
    • v.3 no.4
    • /
    • pp.315-319
    • /
    • 1998
  • Previously, the methanolic extract of Paeonia moutan seeds was found to potently inhibit soybean lipoxy-genase (SLO). Hence to isolate SLO inhibitor, the defattd methaniolic extract of the seeds was consecutively partitioned wiht ether, ethyl acetate,n-butanol ,adn water. The ether souble fraction showing strong inhibitory activity against SLO was further fractionated into a strongly acidic, a weakly acidic, and a neutral fractions. The strongly acidic components of the ether extract were successively subjected to chromatography on a silica gel, Sephadex LH-20, and preparative HPLC. Four phenolic compounds were isolated , and twio of them showing a strong SLO inhibition activity were identified as luteolin (IC50=2.32$\mu\textrm{g}$/ml) and 5,6,4'-trihydroxy-7,3'- dimethoxylflavone (IC50=0.31$\mu\textrm{g}$/ml) by UV, IR, 1H-& 13C-NMR, and MS spectroscopy. In addition, two flavonoids showed significantly antioxidative activity as strong as that of of $\alpha$-tocopherol (p<0.05) in the autoxidation system of linoleic acid. These results suggest that luteolin and 5,6,4'-trihydroxy-7,3'-dimethoxy-flavone may be used as a potential source of anti-inflammatory agents with antioxidative activity.

  • PDF

Study of Synthesis and Property of Eu-PEG Phase Change Luminescent Materials (Eu-PEG로 구성된 상변환 발광재료의 합성 및 물성에 대한 연구)

  • Gu, Xiao-Hua;Xi, Peng;Shen, Xin-Yuan;Cheng, Bo-Wen
    • Polymer(Korea)
    • /
    • v.32 no.4
    • /
    • pp.305-312
    • /
    • 2008
  • A novel TPC-PEG-TPC with active end-groups was obtained from the end-groups of polyethylene glycol (PEG) modified by terephthaloyl chloride (TPC). These active end-groups can link up with a rare earth ion, which is a luminescent center of a rare earth fluorescent complex. Complexes of Eu-PEG with novel ligands (TPC-PEG-PTC) were synthesized by the coordination of the active reactant (as the first ligand) and phenanthroline (as the second ligand) with $Eu^{3+}$.IR, $^1H$-NMR, element analysis, DSC, WAXD, fluorescent spectroscopy, TGA, and SEM were used to characterize the structure and properties of these complexes. The results showed that this type of complex is a heat storage material with the phase change character of polyethylene glycol (PEG) and the luminescent properties of europium. There was no thermal decomposition of the complex of Eu-PEG until $300^{\circ}C$. SEM showed that the complex of Eu-PEG can be dispersed in PE.