• Title/Summary/Keyword: 16s rRNA 유전자

Search Result 343, Processing Time 0.038 seconds

Species Diversity of Betaproteobacteria in the Sumunmulbengdui Wetland Area of Jeju Island and Distribution of Novel Taxa (제주도 숨은물벵뒤 습지 서식 Betaproteobacteria의 종다양성 및 신분류군 분포)

  • Shin, Young-Min;Kim, Tae-Ui;Choi, Ah-Young;Chun, Jee-Sun;Lee, Sang-Hoon;Kim, Ha-Neul;Yi, Ha-Na;Jo, Jae-Hyung;Cho, Jang-Cheon;Jahng, Kwang-Yeop;Kim, Kyu-Joong;Joh, Ki-Seong;Chun, Jong-Sik;Lee, Hyune-Hwan;Kim, Seung-Bum
    • Korean Journal of Environmental Biology
    • /
    • v.29 no.3
    • /
    • pp.154-161
    • /
    • 2011
  • The species diversity of Betaproteobacteria in the Sumunmulbengdui Wetland Area of Jeju Island was studied using culture based techniques, and candidates for novel taxa were screened. Twenty two novel bacterial strains belonging to Betaproteobacteria were isolated, which could be assigned to 16 genera of 4 families, namely Burkholderiaceae (3 strains), Comamonadaceae (8 strains), Oxalobacteraceae (5 strains), Neisseriaceae (5 strains), and an unassigned group belonging to Burkholderiales (1 strain) based 16S rRNA gene sequences. The genus Chromobacterium contained three candidates of novel species, and each of the genera Burkholderia, Comamonas, Pelomonas and Herbaspirillum contained two candidates respectively. Through the analysis of membrane fatty acid profiles and physiological properties using API 20NE as well as morphological and cultural properties, each of the isolates was found to form potentially novel species. Brief description of 22 potential candidates for new species or subspecies is given accordingly.

Seasonal Variation of Bacterial Community in the Seawater of Gwangyang Bay Estimated by Amplified Ribosomal DNA Restriction Analysis (Amplified Ribosomal DNA Restriction Analysis를 이용한 광양만 해수의 세균 군집의 계절적 변화)

  • Ramos, Sonny Cachero;Hwang, Yeoung Min;Lee, Ji Hee;Baik, Keun Sik;Seong, Chi Nam
    • Journal of Life Science
    • /
    • v.23 no.6
    • /
    • pp.770-778
    • /
    • 2013
  • To determine the seasonal variation of bacterial community in the seawater of Gwangyang Bay, three hundred thirty six bacterial strains were isolated on February, May, July and October 2011. Amplified Ribosomal DNA Restriction Analysis (ARDRA) was used to construct the phylotyes of the isolates using the restriction endonuclease, Hae III. Diversity indices of ARDRA patterns were calculated. One hundred and one phylotypes including 40 unique pylotypes were found at the 80% similarity level. Partial 16S rRNA genes of one hundred thirty nine strains representing each phylotypes were sequenced and compared. Bacterial community composed of 4 different phyla which include Proteobacteria, Actinobacteria, Bacteroidetes and Firmicutes. Proteobacteria was the prevailing phylum in all seasons, followed by Bacteroidetes in winter, spring and autumn while Actinobacteria in summer. At the family level, Flavobacteriaceae dominated in winter and spring and Pseudoalteromonadaceae did in summer and autumn. Genera Altererythrobacter, Loktanella, Pseudoalteromonas and Vibrio were encountered in all seasons. The most diverse bacterial community was found in autumn followed by the order of spring, winter and summer.

Development of Detection Method for Niphon spinosus, Epinephelus bruneus, and Epinephelus septemfasciatus using 16S rRNA Gene (16S rRNA를 이용한 다금바리, 자바리, 능성어 판별법 개발)

  • Park, Yong-Chjun;Jung, Yong-Hyun;Kim, Mi-Ra;Shin, Joon-Ho;Kim, Kyu-Heon;Lee, Jae-Hwang;Cho, Tae-Yong;Lee, Hwa-Jung;Lee, Sang-Jae;Han, Sang-Bae
    • Korean Journal of Food Science and Technology
    • /
    • v.45 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Niphon spinosus, Epinephelus bruneus, and Epinephelus septemfasciatus are involved in the Perciformes Order and Serranidae Family. When E. bruneus and E. septemfasciatus are fully grown, the striped pattern on the body gradually disappears. Therefore, morphological classification of adult fishes is quite difficult to identify the differences to N. spinosus. In this study, we investigate the method to differentiate those using PCR. To design the primers, 16S rRNA region of N. spinosus, E. bruneus, and E. septemfasciatus registered in the GeneBank (www.ncbi.nlm.nih.gov) have been used and for the analysis, Bio Edit ver. 7.0.9.0 was used. As a result, it was design NS-003-F/NS-005-R (136 bp), EB-001-F/EB-002-R (181 bp), and ES-001-F/ES-001-R (123 bp) primers for the differentiation of each 3 different fishes. Therefore, the species-specific primer sets would be a useful tool for scientific and speedy differentiation against the illegal distribution for consumer protection.

Isolation of Tetracycline-resistant Lactic Acid Bacteria from Kimchi (김치에서 tetracycline 내성 유산균의 분리)

  • Kang, Hyo-Jin;Kim, Byung-Chun;Park, Wan
    • Korean Journal of Microbiology
    • /
    • v.40 no.1
    • /
    • pp.1-6
    • /
    • 2004
  • Tetracycline resistant bacterial strains were isolated from 10 batches of Kimchi among 50 batches collected in Taegu restrict. The MIC of tetracycline ranged between 25 and> 100 ㎖/l. Total genomic DNA preparation from all 10 tetracycline resistant lactic acid bacterial isolates were subjected to PCR amplification with class-specific primers for tet(M) and tet(O). In only one isolate, HJ9, tet(M) was detected. By Southern blotting and hybridization with a tet(M)-specific probe, the tet(M) gene of HJ9 isolate could be localized on a plasmid. The partial nucleotide sequence and deduced amino acid sequence of tet(M) of HJ9 showed 90-99% and 94-100% homology to those of Gram positive bacteria, respectively. With sequencing of 16S rRNA, HJ9 isolate from Kimchi was identified as Lactobacillus sakei. From these results, Kimchi can be considered potential vehicle for the spread of antibiotic-resistant lactic acid bacteria along the food chain to the consumer.

Identification of a New Agar-hydrolyzing Bacterium Vibrio sp. S4 from the Seawater of Jeju Island and the Biochemical Characterization of Thermostable Agarose (제주도 연안 해양에서 분리한 한천분해 미생물 Vibrio sp. S4의 동정 및 내열성 agarase의 생화학적 특성)

  • Lee, Chang-Ro;Chi, Won-Jae;Bae, Chang-Hwan;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.4
    • /
    • pp.314-321
    • /
    • 2015
  • Agar-hydrolyzing bacteria were isolated from the coastal sea water of Jeju Island. One isolate, designated as S4, was selected for further study. The S4 cells were Gram-negative and rod-shaped with smooth beige surfaces and single polar flagellum. Cells were grown at $15-42^{\circ}C$, 0.5-5% (w/v) NaCl, between pH 6.0 and 9.0, and in media containing 0.5-5% (w/v) NaCl. The G+C content was 49.93 mol%. The major fatty acids (>15%) were $C_{18:1}{\omega}7c$, $C_{16:0}$ and Summed feature 3 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}$ 2-OH). Based on 16S rRNA sequencing and biochemical and chemotaxonomic characteristics, the strain was designated as Vibrio sp. S4. In liquid culture supplemented with 0.1% agar the cell density and agarase activity reached a maximum level in 72 h, while agarase activity in the culture without agar was negligible, implying agarose expression is induced by agar. The optimum pH and temperature for the extracellular crude agarase of S4 were 7.0 and $45^{\circ}C$, respectively. However, it also exhibited 98.6% and 87.6% at $40^{\circ}C$ and $50^{\circ}C$, respectively, of the maximum activity seen at $45^{\circ}C$. The crude agarase hydrolyzed agarose into (neo)agarotetraose and (neo)agarohexaose.

Studies on Bacterial and Fungal Contamination in the Herbal Medicines (한약재에서의 세균과 진균 오염에 관한 연구)

  • Lee, Jin-Sung;Yoon, Young-Sik
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.11 no.12
    • /
    • pp.4826-4832
    • /
    • 2010
  • The study has been done for about two months through June 2 to July 30 of 2010. The study subjects are three herbal-pharmaceutical companies located in Seoul. Each of them purchased thirteen types of medicinal herbs, then the study did analysis for microbial contamination status of bacteria and fungi. Here, the study focuses on settling out fundamental data bases regarding the investigation standards of microbial contamination. As comparing the study results with contamination limits of bacteria and fungi which are represented by $10^7$ CFU/g and $10^4$ CFU/g in number respectively, the total percentage of fungi contamination which is 12.8% is higher than that of bacteria is only 7.7%. In the DNA homology analysis regarding 16S rRNA gene, 117 of colonization have been selected as study subjects. Including B. cereus composing of resistant spores, soil microbes account for approximately 96.6%. It indicates that it is important to establish collection and preservation systems in handling medicinal herbs. Also, it is critical to manage microbial contamination limits. In conclusion, the study proposes the needs to study on possible mingling of bacteria and fungi in manufacturing process, and microbial contamination status in medicinal herbs.

Effect of an Organochlorine Insecticide, Endosulfan on Soil Bacteria Community as Evaluated by 16S rRNA Gene Analysis (유기염소계 살충제 엔도설판이 토양세균 군집에 미치는 영향 평가)

  • Ahn, Jae-Hyung;Park, InCheol;Kim, Wan-Gyu;Han, Byeong-Hak;You, Jaehong
    • The Korean Journal of Pesticide Science
    • /
    • v.21 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Although a global ban on the use of endosulfan, an organochloline insecticide, has taken effect in mid-2012, it has been still used in several countries, including India and China, and detected in diverse environments in the world due to its relative persistence and semi-volatility. In this study, the effect of endosulfan on soil bacterial community was investigated using 16S rRNA gene pyrosequencing method. When endosulfan was applied to an upland soil at a rate of 100 mg/kg soil (ES soil), the number of operational taxonomic units (OTU) and diversity indices for bacteria initially decreased and gradually recovered to the level of the non-treated soil (NT soil) during an eight-week incubation period. At bacterial phylum level, relative abundances of Proteobacteria and Verrucomicrobia were higher while those of Chloroflexi and Spirochaetes were lower in the ES soil than in the NT soil, suggesting that an endosulfan application affects the bacterial community structure in soil. In the ES soil, the relative abundances of the OTUs affiliated to the genera Sphingomonas and Burkholderia increased in the initial period of incubation while those affiliated to the genera Pseudonocardia and Opitutus increased in the late period of incubation. Because the first three genera contain bacterial strains reported to degrade endosulfan, they are expected to be involved in the degradation of endosulfan, probably one after another.

Bacterial Community Dynamics during Composting of Food Wastes (음식물 쓰레기 퇴비화 과정에 따른 세균군집 구조의 변화)

  • Shin, Ji-Hye;Lee, Jin-Woo;Nam, Ji-Hyun;Park, Se-Yong;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.45 no.2
    • /
    • pp.148-154
    • /
    • 2009
  • Composting is a biological process converting solid organic waste into valuable materials such as fertilizer. The change of bacterial populations in a composting reactor of food waste was investigated for 2 months. Based on shifts in temperature profile, the composting process could be divided into the first phase ($2^{\circ}C\sim55^{\circ}C$), the second phase ($55^{\circ}C\sim97^{\circ}C$), and the third phase ($50^{\circ}C\sim89^{\circ}C$). The number of total bacteria was $1.66\times10^{11}$ cell/g, $0.29\times10^{11}$ cell/g, and $0.28\times10^{11}$ cell/g in the first, second, and third stages, respectively. The proportions of thermophiles increased from 33% to 89% in the second stage. T-RFLP analysis and nucleotide sequencing of 16S rRNA gene demonstrated that the change of bacterial community structure was coupled with shifts in composting stages. The structure of bacterial community in the ultra-thermophilic second stage reflected that of seeding starter. The major decomposers driving the ultra-thermophilic composting were identified as phylotypes related to Bacillus and Pseudomonas.

Bacterial Community Structure of Food Wastewater Treatment System Combined with Rotating Biological Contactor and Tapered Aeration Reactor (회전접촉장치와 점감포기 반응조를 이용한 식품폐수 처리시설의 세균군집 구조)

  • Jeong, Soon-Jae;Nam, Ji-Hyun;Bae, Woo-Keun;Lee, Dong-Hun
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.169-176
    • /
    • 2010
  • A pilot-scale wastewater treatment plant combined with rotating biological contactor and tapered aeration reactors was operated with the wastewater discharged from a food factory for 5 months. The bacterial communities of this plant were investigated by terminal restriction fragment length polymorphism (T-RFLP) and phylogenetic analysis of 16S rRNA genes. In spite of high concentration of nitrogen and phosphorus as well as organic carbon, removal efficiency of chemical oxygen demand, total nitrogen, and total phosphorus was 98%, 93%, and 95%, respectively. Bacterial community at the initial operation stage was clearly distinguished from that of the stable operation stage. The most predominant phylum in the sample of stable stage was Bacteroidetes. Major population of operation period was Haliscomenobacter, Sphaerotilus, and candidate division TM7, which were classified as filamentous bacteria. However, sludge bulking caused by these bacteria was not observed. The population that has a close relationship with Haliscomenobacter increased during the stable operation stage, emerging as the most predominant group. These results suggest that the filamentous bacteria participated in nutrient removal when using rotating biological contactor and tapered aeration reactor.

Characterization of Acetobacter sp. Strain CV1 Isolated from a Fermented Vinegar (고산도 생성 초산균의 분리 및 발효특성)

  • Baek, Chang-ho;Baek, Seong-yeol;Lee, Se Hee;Kang, Ji-Eun;Choi, Han-Seok;Kim, Jae-Hyun;Yeo, Soo-Hwan
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.126-133
    • /
    • 2015
  • Ten types of farm-made brewing vinegars were collected and four high acetic acid-producing strains (CV1, CV3, CV5, and CV6) were isolated. Among them strain CV1, exhibiting highly alcohol-resistant and acetic acid-producing properties, was selected and its taxonomic properties were investigated by phenotypic (particularly chemotaxonomic) characterization and phylogenetic inference based on 16S rRNA gene sequence analysis. On SM broth agar, cells of strain CV1 were gram-stainingnegative and formed pale white colonies with smooth to rough surfaces. Strain CV1 produced acetate from ethanol and was resistant to up to 8% (v/v) ethanol in LM broth. Strain CV1 had a G+C content of 61.0 mol%, contained meso-DAP as the cell wall amino acid, and possessed Q-10 as the major ubiquinone. A comparison of 16S rRNA gene sequences showed that strain CV1 was most closely related to Gluconacetobacter saccharivorans (≥99.0% identity). In liquid media, the optimum growth conditions for acetic acid production were 30℃ and pH >3.0 and strain CV1 produced 9.3% and 8.4% acetic acids from 10% and 9% alcohol concentrations, respectively.