• Title/Summary/Keyword: 16s rDNA

Search Result 1,414, Processing Time 0.029 seconds

Antioxidant Properties in Microbial Fermentation Products of Lonicera japonica Thunb. Extract (금은화 추출물을 이용한 미생물 발효 생성물의 항산화 특성)

  • Shin, Jung-Hee;Yoo, Sun-Kyun
    • Journal of the East Asian Society of Dietary Life
    • /
    • v.22 no.1
    • /
    • pp.95-102
    • /
    • 2012
  • The purpose of this study is to investigate antioxidant properties in microbial fermentation products of Lonicera japonica Thunb extract. The bacterium Lactobacillus plantarum NHP1 was isolated from conventional fermented foods. Modern pharmacological studies show that Lonicera japonica Thunb and its active principles of wide pharmacological actions. For instance, they show a strong efficacy in antibacterial, anti-inflammatory, antiviral, anti-endotoxin, blood fat reducing, antipyretic, and antioxidant activities. The extract of Lonicera japonica Thunb was obtained by extracting dried Lonicera japonica Thunb using either hot water or 70% ethanol as a solvent. Fermentation was performed in a 2L fermentor containing 1.2 L of extractat conditions of $30^{\circ}C$ and 100 rpm for 48 hr. The amount of cholorogenic acid was $2.65{\mu}g/g$ in hot water extract. The total phenolic content (GAE, gallic acid equivalent) in hot water and 70% ethanol were $56.5{\pm}4.9$ GAE mg/g and $72.7{\pm}5.3$ GAE mg/g, respectively. After fermentation, the phenolic content increased to 30.2% in hot water and 12.9% in ethanol extract. In the same manner, flavonoid content increased to more than 75% regardless of extract solvent. ABTS (2,2-azino-bis-3-ethylbenzthiazoline-6-sulfonic acid) value noticeably increased to 50% after fermentation.

Characterization of heterotrophic nitrification and aerobic denitrification by Alcaligenes faecalis NS13 (Alcaligenes faecalis NS13에 의한 호기성 종속영양 질산화 및 탈질화)

  • Jung, Taeck-Kyung;Ra, Chang-Six;Joh, Ki-Seong;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.166-174
    • /
    • 2016
  • In order to find an efficient bacterial strain that can carry out nitrification and denitrification simultaneously, we isolated many heterotrophic nitrifying bacteria from wastewater treatment plant. One of isolates NS13 showed high removal rate of ammonium and was identified as Alcaligenes faecalis by analysis of its 16S rDNA sequence, carbon source utilization and fatty acids composition. This bacterium could remove over 99% of ammonium in a heterotrophic medium containing 140 mg/L of ammonium at pH 6-9, $25-37^{\circ}C$ and 0-4% of salt concentrations within 2 days. It showed even higher ammonium removal at higher initial ammonium concentration in the medium. A. faecalis NS13 could also reduce nitrate and nitrous oxide by nitrate reductase and nitrous oxide reductase, respectively, which was confirmed by detection of nitrate reductase gene, napA, and nitrous oxide reducase gene, nosZ, by PCR. One of metabolic intermediate of denitrification, $N_2O$ was detected from headspace of bacterial culture. Based on analysis of all nitrogen compounds in the bacterial culture, 42.8% of initial nitrogen seemed to be lost as nitrogen gas, and 46.4% of nitrogen was assimilated into bacterial biomass which can be removed as sludge in treatment processes. This bacterium was speculated to perform heterotrophic nitrification and aerobic denitrification simultaneously, and may be utilized for N removal in wastewater treatment processes.

Selection and Identification of Phytohormones and Antifungal Substances Simultaneously Producing Plant Growth Promoting Rhizobacteria from Microbial Agent Treated Red-pepper Fields (미생물제제시용 고추경작지로부터 식물생장홀몬과 항진균물질을 동시에 생산하는 식물생장촉진근권세균의 선발 및 동정)

  • Jung, Byung-Kwon;Lim, Jong-Hui;An, Chang-Hwan;Kim, Yo-Hwan;Kim, Sang-Dal
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.190-196
    • /
    • 2012
  • In this study, a total of more than 1,000 bacteria, including 739 species of aerobic bacteria, 80 species of urease producing bacteria and 303 species of photosynthetic bacteria, were isolated from red-pepper field soils located in the Gyeongsan Province of the Republic of Korea. Amongst these, 158 species of aerobic bacteria, 70 species of urease producing bacteria and 228 species of photosynthetic bacteria were found to be auxin producing soil bacteria through quantification analysis with the Salkowski test. The latter groupings were then tested for antifungal activities to ${\beta}$-Glucanase and siderophore using CMC congo red agar and CAS blue agar media. In addition, the selected strains were examined for antifungal activity against various phytopathogenic fungi on PDN agar media. Six strains; BCB14, BCB17, C10, HA46, HA143, and HJ5, were noted for their ability to both produce auxin and act as antifungal substances. 16S rDNA sequence comparison analyses of these six strains identified them as Bacillus subtilis BCB14, B. methylotrophicus BCB17, B. methylotrophicus C10, B. sonorensis HA46, B. subtilis HA143, and B. safensis HJ5.

The Pathogenicity and Biochemical Characteristics of Vibrio harveyi Isolated from the Pacific Abalone, Haliotis discus hannai (양식 전복(Haliotis discus hannai)으로부터 분리된 Vibrio harveyi의 생화학적 특성 및 병원성)

  • Kim, Jin-Do;Kim, Myoung-Sug;Won, Kyung-Mi;Do, Jeong-Wan;Lee, Deok Chan;Jung, Sung Hee;Jin, Se Yoon;Lee, Nam-Sil;Cho, Miyoung
    • Korean Journal of Environmental Biology
    • /
    • v.35 no.4
    • /
    • pp.670-676
    • /
    • 2017
  • Recently, mass mortality of the young abalone Haliotis discus hannai has occurred in commercial seed production farms in Korea. The mortality rate was above 50% of the total cultured organisms in the farm, and the shell length of the moribund organisms was about 3cm. The mortal phenomenon was that the young abalones were weakly scattered on the bottom of the pond from the attachment matrix, or that they could not be moved back to their normal positions. The diseased farmed Pacific abalone had abdominal edema. From the edema in the moribund individuals, three bacterial strains were isolated and all the strains were identified as Vibrio harveyi. These strains were compared with thirty six strains isolated from the fish. The results was that the Vibrio harveyi from the fish were sorted into genogroup A or B; however, the three strains of the diseased farmed Pacific abalone were sorted into genogroup A and the new genogroup C. The identical mortality and pathological symptoms of the naturally infected organisms were reproduced by artificial infection with WA AG-1 and WA CS-5 strains. The $LD_{50}$ of WA AG-1 and WA CS-5 were each $1.0{\times}10^3cfu\;animal^{-1}$ and $1.7{\times}10^4cfu\;animal^{-1}$.

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome

  • Yi, Seung-Won;Lee, Han Gyu;So, Kyoung-Min;Kim, Eunju;Jung, Young-Hun;Kim, Minji;Jeong, Jin Young;Kim, Ki Hyun;Oem, Jae-Ku;Hur, Tai-Young;Oh, Sang-Ik
    • Animal Bioscience
    • /
    • v.35 no.11
    • /
    • pp.1698-1710
    • /
    • 2022
  • Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.

PM2.5 in poultry houses synergizes with Pseudomonas aeruginosa to aggravate lung inflammation in mice through the NF-κB pathway

  • Li, Meng;Wei, Xiuli;Li, Youzhi;Feng, Tao;Jiang, Linlin;Zhu, Hongwei;Yu, Xin;Tang, Jinxiu;Chen, Guozhong;Zhang, Jianlong;Zhang, Xingxiao
    • Journal of Veterinary Science
    • /
    • v.21 no.3
    • /
    • pp.46.1-46.18
    • /
    • 2020
  • Background: High concentrations of particulate matter less than 2.5 ㎛ in diameter (PM2.5) in poultry houses is an important cause of respiratory disease in animals and humans. Pseudomonas aeruginosa is an opportunistic pathogen that can induce severe respiratory disease in animals under stress or with abnormal immune functions. When excessively high concentrations of PM2.5 in poultry houses damage the respiratory system and impair host immunity, secondary infections with P. aeruginosa can occur and produce a more intense inflammatory response, resulting in more severe lung injury. Objectives: In this study, we focused on the synergistic induction of inflammatory injury in the respiratory system and the related molecular mechanisms induced by PM2.5 and P. aeruginosa in poultry houses. Methods: High-throughput 16S rDNA sequence analysis was used for characterizing the bacterial diversity and relative abundance of the PM2.5 samples, and the effects of PM2.5 and P. aeruginosa stimulation on inflammation were detected by in vitro and in vivo. Results: Sequencing results indicated that the PM2.5 in poultry houses contained a high abundance of potentially pathogenic genera, such as Pseudomonas (2.94%). The lung tissues of mice had more significant pathological damage when co-stimulated by PM2.5 and P. aeruginosa, and it can increase the expression levels of interleukin (IL)-6, IL-8, and tumor necrosis factor-α through nuclear factor (NF)-κB pathway in vivo and in vitro. Conclusions: The results confirmed that poultry house PM2.5 in combination with P. aeruginosa could aggravate the inflammatory response and cause more severe respiratory system injuries through a process closely related to the activation of the NF-κB pathway.

Amelioration of colitis progression by ginseng-derived exosome-like nanoparticles through suppression of inflammatory cytokines

  • Jisu Kim;Shuya Zhang ;Ying Zhu;Ruirui Wang;Jianxin Wang
    • Journal of Ginseng Research
    • /
    • v.47 no.5
    • /
    • pp.627-637
    • /
    • 2023
  • Background: Damage to the healthy intestinal epithelial layer and regulation of the intestinal immune system, closely interrelated, are considered pivotal parts of the curative treatment for inflammatory bowel disease (IBD). Plant-based diets and phytochemicals can support the immune microenvironment in the intestinal epithelial barrier for a balanced immune system by improving the intestinal microecological balance and may have therapeutic potential in colitis. However, there have been only a few reports on the therapeutic potential of plant-derived exosome-like nanoparticles (PENs) and the underlying mechanism in colitis. This study aimed to assess the therapeutic effect of PENs from Panax ginseng, ginseng-derived exosome-like nanoparticles (GENs), in a mouse model of IBD, with a focus on the intestinal immune microenvironment. Method: To evaluate the anti-inflammatory effect of GENs on acute colitis, we treated GENs in Caco2 and lipopolysaccharide (LPS) -induced RAW 264.7 macrophages and analyzed the gene expression of proinflammatory cytokines and anti-inflammatory cytokines such as TNF-α, IL-6, and IL-10 by real-time PCR (RT-PCR). Furthermore, we further examined bacterial DNA from feces and determined the alteration of gut microbiota composition in DSS-induced colitis mice after administration of GENs through 16S rRNA gene sequencing analysis. Result: GENs with low toxicity showed a long-lasting intestinal retention effect for 48 h, which could lead to effective suppression of pro-inflammatory cytokines such as TNF-α and IL-6 production through inhibition of NF-κB in DSS-induced colitis. As a result, it showed longer colon length and suppressed thickening of the colon wall in the mice treated with GENs. Due to the amelioration of the progression of DSS-induced colitis with GENs treatment, the prolonged survival rate was observed for 17 days compared to 9 days in the PBS-treated group. In the gut microbiota analysis, the ratio of Firmicutes/Bacteroidota was decreased, which means GENs have therapeutic effectiveness against IBD. Ingesting GENs would be expected to slow colitis progression, strengthen the gut microbiota, and maintain gut homeostasis by preventing bacterial dysbiosis. Conclusion: GENs have a therapeutic effect on colitis through modulation of the intestinal microbiota and immune microenvironment. GENs not only ameliorate the inflammation in the damaged intestine by downregulating pro-inflammatory cytokines but also help balance the microbiota on the intestinal barrier and thereby improve the digestive system.

Prevalence of HPV Infection and HPV Genotype Spectrum among Sexually High-Risk Women in Busan (부산지역 유흥업소 종사 여성의 HPV 감염 및 유전자형 분포 조사)

  • Min, Sang-Kee;Kim, Sung-Soon;Choi, Byeong-Sun;Cho, Kyung-Soon;Lee, Joo-Yun;Kim, Seong-Joon;Bin, Jae-Hun;Park, Ho-Kuk
    • Journal of Life Science
    • /
    • v.19 no.2
    • /
    • pp.234-240
    • /
    • 2009
  • We tried to analyze the HPV prevalence and HPV genotypes of sexually high-risk women living in Busan, the biggest seaport of South Korea. Six hundred sixty women engaging in high-risk occupations participated in this study. The prevalence of HPV infection and HPV genotyping were determined with $MyGene^{(R)}$ HPVDNA chip, which consisted of 16 high-risk HPV genotypes (oncogenic genotypes) and 8 low-risk HPV genotypes. The overall prevalence of HPV infection in this study population was 39.1% (258/660) and the 20's showed the highest prevalence of HPV infection (51.5%). The dominant HPV genotypes including single or multiple HPV-infected women were resulted in HPV-16 (15.9%), -53 (10.2%), -58 (7.7%), -18 (5.2%) in case of high-risk HPV genotype and HPV-70 (10.4%), -6 (4.1%), -11 (2.0%) in case of low-risk HPV genotypes. Remarkably, the proportion of women infected with high-risk HPV genotypes (62.0%) was almost four times higher than those of women infected with low-risk HPV genotypes (14.7%) and high/low-risk HPV genotypes (12.0%). Among the 258 HPV-infected women, single infection was 175, double infection 66, triple infection 12, quadruple infection 4, quintuple infection 1, respectively. Our finding suggests that the introduction and development of effective HPV vaccines should consider the current status of HPV genotypic infection in South Korean women.

Potential of Antifungal Lactic Acid Bacteria Isolated from Kimchi as Cheese Starters (김치 분리 항진균 유산균의 치즈 스타터로서 이용 가능성)

  • Oh, Hyun Hee;Huh, Chang Ki;Choi, Ha Nuel;Yang, Hee Sun;Bae, In Hyu;Lee, Jai Sung;Jeong, Yong Seob;Lee, Nam Keun;Jung, Hoo Kil
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.133-141
    • /
    • 2013
  • This study was performed to identify the cheese starter potential of antifungal lactic acid bacteria isolated from Kimchi. Eight fungi were isolated from cheese or the cheese ripening room, and identified as Penicillium and Cladosporium by ITS-5.8S rDNA analysis. Twenty-two lactic acid bacteria species with antifungal activity were isolated from Kimchi, and identified as Lactobacillus and Pediococcus by 16S rRNA sequence analysis. Six lactic acid bacteria species were selected (L. sakei subsp. ALJ011, L. sakei subsp. ALI033, L. sakei subsp. ALGy039, P. pentosaceus ALJ015, P. pentosaceus ALJ024, and P. pentosaceus ALJ026) based on higher antifungal activity from the initial 22 species. Out of the six identified species, L. sakei subsp. ALI033 had the highest antifungal activity. For growth of the six lactic acid bacteria, optimal temperature and pH were $30{\sim}37^{\circ}C$ and 7.0, respectively. Proteolytic activities of the six lactic acid bacteria were almost as strong as the commercial strain Str. thermophilus Body-1. Coagulative activities of L. sakei subsp. ALI033, P. pentosaceus ALJ015, and P. pentosaceus ALJ024 were higher than those of L. sakei subsp. ALJ011, L. sakei subsp. ALGy039, and P. pentosaceus ALJ026. The acid resistance of L. sakei subsp. was higher than that of P. pentosaceus. The major organic acid component of the lactic acid bacteria culture medium was lactic acid.

  • PDF

Microbial Community Analysis of Tarak, a Fermented Milk Product (우리나라 전통 발효유 타락의 미생물 균총 분석)

  • Lim, Goo-Sang;Lee, Kyung-Soo;Jang, Hye-Jin;Jung, Jin-Kyung;Lim, Ji-Young;Chun, TaeHoon;Han, Young-Sook;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.42 no.7
    • /
    • pp.1109-1114
    • /
    • 2013
  • Microbial community analysis was performed on Tarak, a traditional Korean fermented milk product, by 16S rDNA cloning and pyrosequencing to obtain basic data for the standardization and systematization of the Tarak manufacturing process. Microbial analysis of the prokaryotic community revealed a slight difference in microbial abundance between Bontarak (n) and Tarak (n+1), but Firmicute was dominant at the phylum level. At the genus level, the Lactobacillus and Leuconostoc genera constituted over 90% of the population in Bontarak, but Lactococcus was the dominant genus in Tarak. Bontarak and Tarak showed further differences at the species level. Leuconostoc citreum was the dominant species in Bontarak, constituting 40% of the population. In eukaryotic community analysis, all samples were composed of Ascomycota at the phylum level. At the genus level, Saccharomyces was dominant in Bontarak (85% of the population), while Issatchenkia was dominant in Tarak (95% of the population). At the species level, Saccharomyces cerevisiae was detected at a relative abundance in Bontarak (82%), and Pichia kudriavzevii was the dominant species in Tarak, with a relative abundance of 95%. Sensory evaluation indicated that Tarak had a better appearance and texture than Bontarak. As sweetness was not significantly different between the two samples just slightly higher in Tarak, this was likely due to a significant decrease in sourness in Tarak. These results suggest that the microbial community used affects the quality of Tarak produced. Thus, a stable microbial community must be maintained for the production of Tarak with consistent quality.