Browse > Article
http://dx.doi.org/10.5713/ab.22.0045

Effect of feeding raw potato starch on the composition dynamics of the piglet intestinal microbiome  

Yi, Seung-Won (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Lee, Han Gyu (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
So, Kyoung-Min (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Kim, Eunju (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Jung, Young-Hun (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Kim, Minji (Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration)
Jeong, Jin Young (Animal Nutrition and Physiology Division, National Institute of Animal Science, Rural Development Administration)
Kim, Ki Hyun (Animal Welfare Research Team, National Institute of Animal Science, Rural Development Administration)
Oem, Jae-Ku (Laboratory of Veterinary Infectious Disease, College of Veterinary Medicine, Jeonbuk National University)
Hur, Tai-Young (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Oh, Sang-Ik (Division of Animal Diseases & Health, National Institute of Animal Science, Rural Development Administration)
Publication Information
Animal Bioscience / v.35, no.11, 2022 , pp. 1698-1710 More about this Journal
Abstract
Objective: Raw potato starch (RPS) is resistant to digestion, escapes absorption, and is metabolized by intestinal microflora in the large intestine and acts as their energy source. In this study, we compared the effect of different concentrations of RPS on the intestinal bacterial community of weaned piglets. Methods: Male weaned piglets (25-days-old, 7.03±0.49 kg) were either fed a corn/soybean-based control diet (CON, n = 6) or two treatment diets supplemented with 5% RPS (RPS5, n = 4) or 10% RPS (RPS10, n = 4) for 20 days and their fecal samples were collected. The day 0 and 20 samples were analyzed using a 16S rRNA gene sequencing technology, followed by total genomic DNA extraction, library construction, and high-throughput sequencing. After statistical analysis, five phyla and 45 genera accounting for over 0.5% of the reads in any of the three groups were further analyzed. Furthermore, short-chain fatty acids (SCFAs) in the day 20 fecal samples were analyzed using gas chromatography. Results: Significant changes were not observed in the bacterial composition at the phylum level even after 20 d post feeding (dpf); however, the abundance of Intestinimonas and Barnesiella decreased in both RPS treatment groups compared to the CON group. Consumption of 5% RPS increased the abundance of Roseburia (p<0.05) and decreased the abundance of Clostridium (p<0.01) and Mediterraneibacter (p< 0.05). In contrast, consumption of 10% RPS increased the abundance of Olsenella (p<0.05) and decreased the abundance of Campylobacter (p<0.05), Kineothrix (p<0.05), Paraprevotella (p<0.05), and Vallitalea (p<0.05). Additionally, acetate (p<0.01), butyrate (p<0.05), valerate (p = 0.01), and total SCFAs (p = 0.01) were upregulated in the RPS5 treatment group Conclusion: Feeding 5% RPS altered bacterial community composition and promoted gut health in weaned piglets. Thus, resistant starch as a feed additive may prevent diarrhea in piglets during weaning.
Keywords
Feed; Metagenomics; Microbiome; Piglet; Resistant Starch; Short Chain Fatty Acids;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Campbell JM, Crenshaw JD, Polo J. The biological stress of early weaned piglets. J Anim Sci Biotechnol 2013;4:19. https://doi.org/10.1186/2049-1891-4-19   DOI
2 Gresse R, Chaucheyras-Durand F, Fleury MA, Van de Wiele T, Forano E, Blanquet-Diot S. Gut microbiota dysbiosis in postweaning piglets: Understanding the keys to health. Trends Microbiol 2017;25:851-73. https://doi.org/10.1016/j.tim.2017.05.004   DOI
3 Hermann-Bank ML, Skovgaard K, Stockmarr A, et al. Characterization of the bacterial gut microbiota of piglets suffering from new neonatal porcine diarrhoea. BMC Vet Res 2015;11:139. https://doi.org/10.1186/s12917-015-0419-4   DOI
4 Heo JM, Opapeju FO, Pluske JR, Kim JC, Hampson DJ, Nyachoti CM. Gastrointestinal health and function in weaned pigs: a review of feeding strategies to control post-weaning diarrhoea without using in-feed antimicrobial compounds. J Anim Physiol Anim Nutr (Berl). 2013;97:207-37. https://doi.org/10.1111/j.1439-0396.2012.01284.x   DOI
5 Zhao J, Bai Y, Tao S, et al. Fiber-rich foods affected gut bacterial community and short-chain fatty acids production in pig model. J Funct Foods 2019;57:266-74. https://doi.org/10.1016/j.jff.2019.04.009   DOI
6 Champ MM. Physiological aspects of resistant starch and in vivo measurements. J AOAC Int 2004;87:749-55. https://doi.org/10.1093/jaoac/87.3.749   DOI
7 Trachsel J, Briggs C, Gabler NK, Allen HK, Loving CL. Dietary resistant potato starch alters intestinal microbial communities and their metabolites, and markers of immune regulation and barrier function in swine. Front Immunol 2019;10:1381. https://doi.org/10.3389/fimmu.2019.01381   DOI
8 Zhou L, Fang L, Sun Y, Su Y, Zhu W. Effects of a diet high in resistant starch on fermentation end-products of protein and mucin secretion in the colons of pigs. Starch-Starke; 2017;69:1600032. https://doi.org/10.1002/star.201600032   DOI
9 Ding X, Lan W, Liu G, Ni H, Gu JD. Exploring possible associations of the intestine bacterial microbiome with the preweaned weight gaining performance of piglets in intensive pig production. Sci Rep 2019;9:15534. https://doi.org/10.1038/s41598-019-52045-4   DOI
10 Kim HB, Isaacson RE. The pig gut microbial diversity: Understanding the pig gut microbial ecology through the next generation high throughput sequencing. Vet Microbiol 2015; 177:242-51. https://doi.org/10.1016/j.vetmic.2015.03.014   DOI
11 Liu P, Zhao J, Wang W, et al. Dietary corn bran altered the diversity of microbial communities and cytokine production in weaned pigs. Front Microbiol 2018;9:2090. https://doi.org/10.3389/fmicb.2018.02090   DOI
12 Zhang J, Chen X, Liu P, et al. Dietary Clostridium butyricum induces a phased shift in fecal microbiota structure and increases the acetic acid-producing bacteria in a weaned piglet model. J Agric Food Chem 2018;66:5157-66. https://doi.org/10.1021/acs.jafc.8b01253   DOI
13 Regmi PR, Metzler-Zebeli BU, Ganzle MG, van Kempen TATG, Zijlstra RT. Starch with high amylose content and low in vitro digestibility increases intestinal nutrient flow and microbial fermentation and selectively promotes Bifidobacteria in pigs. J Nutr 2011;141:1273-80. https://doi.org/10.3945/jn.111.140509   DOI
14 Togo AH, Diop A, Bittar F, et al. Description of Mediterraneibacter massiliensis, gen. nov., sp. nov., a new genus isolated from the gut microbiota of an obese patient and reclassification of Ruminococcus faecis, Ruminococcus lactaris, Ruminococcus torques, Ruminococcus gnavus and Clostridium glycyrrhizinilyticum as Mediterraneibacter faecis comb. nov., Mediterraneibacter lactaris comb. nov., Mediterraneibacter torques comb. nov., Mediterraneibacter gnavus comb. nov. and Mediterraneibacter glycyrrhizinilyticus comb. nov. Antonie van Leeuwenhoek 2018;111:2107-28. https://doi.org/10.1007/s10482-018-1104-y   DOI
15 Baumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature 2016;535: 85-93. https://doi.org/10.1038/nature18849   DOI
16 Gerrits WJ, Bosch MW, van den Borne JJ. Quantifying resistant starch using novel, in vivo methodology and the energetic utilization of fermented starch in pigs. J Nutr 2012;142:238-44. https://doi.org/10.3945/jn.111.147496   DOI
17 Nielsen TS, Laerke HN, Theil PK, et al. Diets high in resistant starch and arabinoxylan modulate digestion processes and scfa pool size in the large intestine and faecal microbial composition in pigs. Br J Nutr 2014;112:1837-49. https://doi.org/10.1017/S000711451400302X   DOI
18 Guo L, Zhang D, Fu S, et al. Metagenomic sequencing analysis of the effects of colistin sulfate on the pig gut microbiome. Front Vet Sci 2021;8:663820. https://doi.org/10.3389/fvets.2021.663820   DOI
19 Moeser AJ, Pohl CS, Rajput M. Weaning stress and gastrointestinal barrier development: Implications for lifelong gut health in pigs. Anim Nutr 2017;3:313-21. https://doi.org/10.1016/j.aninu.2017.06.003   DOI
20 Mach N, Berri M, Estelle J, et al. Early-life establishment of the swine gut microbiome and impact on host phenotypes. Environ Microbiol Rep 2015;7:554-69. https://doi.org/10.1111/1758-2229.12285   DOI
21 Pauly C, Spring P, O'Doherty JV, Kragten SA, Bee G. Performances, meat quality and boar taint of castrates and entire male pigs fed a standard and a raw potato starch-enriched diet. Animal 2008;2:1707-15. https://doi.org/10.1017/S1751731108002826   DOI
22 Fang L, Jiang X, Su Y, Zhu W. Long-term intake of raw potato starch decreases back fat thickness and dressing percentage but has no effect on the longissimus muscle quality of growing-finishing pigs. Livest Sci 2014;170:116-23. https://doi.org/10.1016/j.livsci.2014.10.004   DOI
23 Bang SJ, Lee ES, Song EJ, et al. Effect of raw potato starch on the gut microbiome and metabolome in mice. Int J Biol Macromol 2019;133:37-43. https://doi.org/10.1016/j.ijbiomac.2019.04.085   DOI
24 Hughes RL, Horn WH, Finnegan P, et al. Resistant starch type 2 from wheat reduces postprandial glycemic response with concurrent alterations in gut microbiota composition. Nutrients 2021;13:645. https://doi.org/10.3390/nu13020645   DOI
25 Vazquez-Baeza Y, Pirrung M, Gonzalez A, Knight R. EMPeror: A tool for visualizing high-throughput microbial community data. GigaScience 2013;2:16. https://doi.org/10.1186/2047-217X-2-16   DOI
26 Zhang D, Liu H, Wang S, et al. Fecal microbiota and its correlation with fatty acids and free amino acids metabolism in piglets after a Lactobacillus strain oral administration. Front Micobiol 2019:10:785. https://doi.org/10.3389/fmicb.2019.00785   DOI
27 Bindelle J, Leterme P, Buldgen A. Nutritional and environmental consequences of dietary fibre in pig nutrition: a review. Biotechnol Agron Soc Environ 2008;12:69-80.
28 Sun Y, Su Y, Zhu W. Microbiome-metabolome responses in the cecum and colon of pig to a high resistant starch diet. Front Microbiol 2016;7:779. https://doi.org/10.3389/fmicb.2016.00779   DOI
29 Han GG, Lee JY, Jin GD, et al. Evaluating the association between body weight and the intestinal microbiota of weaned piglets via 16S rRNA sequencing. Appl Microbiol Biotechnol 2017;101:5903-11. https://doi.org/10.1007/s00253-017-8304-7   DOI
30 Aarestrup FM, Jensen VF, Emborg HD, Jacobsen E, Wegener HC. Changes in the use of antimicrobials and the effects on productivity of swine farms in Denmark. Am J Vet Res 2010;71:726-33. https://doi.org/10.2460/ajvr.71.7.726   DOI
31 Levesque S, Lemay F, Bekal S, Frost EH, Michaud S. First reported case of Campylobacter lanienae enteritis in a human. JMM Case Rep 2016;3:e005045. https://doi.org/10.1099/jmmcr.0.005045   DOI
32 Hedemann MS, Bach Knudsen KEB. Resistant starch for weaning pigs: effect on concentration of short chain fatty acids in digesta and intestinal morphology. Livest Sci 2007; 108:175-7. https://doi.org/10.1016/j.livsci.2007.01.045   DOI
33 Sun Y, Zhou L, Fang L, Su Y, Zhu W. Responses in colonic microbial community and gene expression of pigs to a longterm high resistant starch diet. Front Microbiol 2015;6:877. https://doi.org/10.3389/fmicb.2015.00877   DOI
34 Poco Jr SE, Nakazawa F, Sato M, Hoshino E. Eubacterium minutum sp. Nov., isolated from human periodontal pockets. Int J Syst Bacteriol 1996;46:31-4. https://doi.org/10.1099/00207713-46-1-31   DOI
35 Kemp JA, Regis de Paiva B, Fragoso Dos Santos H, et al. The impact of enriched resistant starch type-2 cookies on the gut microbiome in hemodialysis patients: a randomized controlled trial. Mol Nutr Food Res 2021;65:2100374. https://doi.org/10.1002/mnfr.202100374   DOI
36 Ben Aissa FB, Postec A, Erauso G, et al. Vallitalea pronyensis sp. Nov., isolated from a marine alkaline hydrothermal chimney. Int J Syst Evol Microbiol 2014;64:1160-5. https://doi.org/10.1099/ijs.0.055756-0   DOI
37 Haas KN, Blanchard JL. Kineothrix alysoides, gen. Nov., sp. nov., a saccharolytic butyrate-producer within the family Lachnospiraceae. Int J Syst Evol Microbiol 2017;67:402-10. https://doi.org/10.1099/ijsem.0.001643   DOI
38 Morotomi M, Nagai F, Sakon H, Tanaka R. Paraprevotella clara gen. Nov., sp. Nov. and Paraprevotella xylaniphila sp. Nov., members of the family 'Prevotellaceae' isolated from human faeces. Int J Syst Evol Microbiol 2009;59:1895-900. https://doi.org/10.1099/ijs.0.008169-0   DOI
39 Schouw A, Leiknes Eide TL, Stokke R, Pedersen RB, Steen IH, Bodtker G. Abyssivirga alkaniphila gen. Nov., sp. Nov., an alkane-degrading, anaerobic bacterium from a deep-sea hydrothermal vent system, and emended descriptions of Natranaerovirga pectinivora and Natranaerovirga hydrolytica. Int J Syst Evol Microbiol 2016;66:1724-34. https://doi.org/10.1099/ijsem.0.000934   DOI
40 Hamer HM, Jonkers D, Venema K, Vanhoutvin S, Troost FJ, Brummer RJ. Review article: The role of butyrate on colonic function. Aliment Pharmacol Ther 2008;27:104-19. https://doi.org/10.1111/j.1365-2036.2007.03562.x   DOI
41 Kraatz M, Wallace RJ, Svensson L. Olsenella umbonata sp. nov., a microaerotolerant anaerobic lactic acid bacterium from the sheep rumen and pig jejunum, and emended descriptions of Olsenella, Olsenella uli and Olsenella profusa. Int J Syst Evol Microbiol 2011;61:795-803. https://doi.org/10.1099/ijs.0.022954-0   DOI
42 Li X, Jensen RL, Hojberg O, Canibe N, Jensen BB. Olsenella scatoligenes sp. Nov., a 3-methylindole-(skatole) and 4-methylphenol-(p-cresol) producing bacterium isolated from pig faeces. Int J Syst Evol Microbiol 2015;65:1227-33. https://doi.org/10.1099/ijs.0.000083   DOI
43 Wylensek D, Hitch TCA, Riedel T, et al. A collection of bacterial isolates from pig intestines revealed functional and taxonomic diversity. Nat Commun 2020;11:6389. https://doi.org/10.1038/s41467-020-19929-w   DOI
44 Morotomi M, Nagai F, Sakon H, Tanaka R. Dialister succinatiphilus sp. Nov. and Barnesiella intestinihominis sp. Nov., isolated from human faeces. Int J Syst Evol Microbiol 2008; 58:2716-20. https://doi.org/10.1099/ijs.0.2008/000810-0   DOI
45 Bui TPN, Ritari J, Boeren S, Plugge CM, de Vos WM. Production of butyrate from lysine and the amadori product fructoselysine by a human gut commensal. Nat Commun 2015;6:10062. https://doi.org/10.1038/ncomms10062   DOI
46 Kumar H, Jang YN, Kim K, Park J, Jung MW, Park JE. Compositional and functional characteristics of swine slurry microbes through 16S rRNA metagenomic sequencing approach. Animals 2020;10:1372. https://doi.org/10.3390/ani10081372   DOI
47 Torres-Pitarch A, Gardiner GE, Cormican P, et al. Effect of cereal soaking and carbohydrase supplementation on growth, nutrient digestibility and intestinal microbiota in liquid-fed grow-finishing pigs. Sci Rep 2020;10:1023. https://doi.org/10.1038/s41598-020-57668-6   DOI
48 Ruzauskas M, Bartkiene E, Stankevicius A, et al. The influence of essential oils on gut microbial profiles in pigs. Animals (Basel) 2020;10:1734. https://doi.org/10.3390/ani10101734   DOI
49 Hasan S, Saha S, Junnikkala S, Orro T, Peltoniemi O, Oliviero C. Late gestation diet supplementation of resin acid-enriched composition increases sow colostrum immunoglobulin G content, piglet colostrum intake and improve sow gut microbiota. Animal 2018;13:1599-606. https://doi.org/10.1017/S1751731118003518   DOI
50 Long SF, Xu YT, Pan L, et al. Mixed organic acids as antibiotic substitutes improve performance, serum immunity, intestinal morphology and microbiota for weaned piglets. Anim Feed Sci Technol 2018;235:23-32. https://doi.org/10.1016/j.anifeedsci.2017.08.018   DOI
51 Casas GA, Blavi L, Cross TWL, Lee AH, Swanson KS, Stein HH. Inclusion of the direct-fed microbial Clostridium butyricum in diets for weanling pigs increases growth performance and tends to increase villus height and crypt depth, but does not change intestinal microbial abundance. J Anim Sci 2020;98:skz372. https://doi.org/10.1093/jas/skz372   DOI
52 Hu X, Lin B, Luo M, Zheng X, Zhang H. The isolation, identification, physiological property of pig-isolate Clostridium butyricum ly33 using lactic acid and its effects on intestinal function of weaned piglets. Ital J Anim Sci 2019;18:910-21. https://doi.org/10.1080/1828051X.2019.1603089   DOI
53 Jin M, Kalainy S, Baskota N, et al. Faecal microbiota from patients with cirrhosis has a low capacity to ferment nondigestible carbohydrates into short-chain fatty acids. Liver Int 2019;39:1437-47. https://doi.org/10.1111/liv.14106   DOI
54 Burrough E, Terhorst S, Sahin O, Zhang Q. Prevalence of campylobacter spp. Relative to other enteric pathogens in grow-finish pigs with diarrhea. Anaerobe 2013;22:111-4. https://doi.org/10.1016/j.anaerobe.2013.06.004   DOI
55 Leser TD, Amenuvor JZ, Jensen TK, Lindecrona RH, Boye M, Moller K. Culture-independent analysis of gut bacteria: the pig gastrointestinal tract microbiota revisited. Appl Environ Microbiol 2002;68:673-90. https://doi.org/10.1128/AEM.68.2.673-690.2002   DOI
56 Climent E, Martinez-Blanch JF, Llobregat L, et al. Changes in gut microbiota correlates with response to treatment with probiotics in patients with atopic dermatitis. A post hoc analysis of a clinical trial. Microorganisms 2021;9:854. https://doi.org/10.3390/microorganisms9040854   DOI