• Title/Summary/Keyword: 16S ribosomal

Search Result 250, Processing Time 0.035 seconds

Genetic Analysis of a Structural Motif Within the Conserved 530 Stem-Loop of Escherichia coli 16S rRNA

  • Szatkiewicz Jin P.;Cho Hyun-Dae;Ryou Sang-Mi;Kim Jong-Myung;Cunningham Philip R.;Lee Kang-Seok
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.4
    • /
    • pp.569-575
    • /
    • 2006
  • The 530 stem-loop is a 46 nucleotide stem-loop structure found in all small-subunit ribosomal RNAs. Phylogenetic and mutational studies by others suggest the requirement for Watson-Crick interactions between the nucleotides 505-507 and 524-526 (530 pseudoknot), which are highly conserved. To examine the nature and functional significance of these interactions, a random mutagenesis experiment was conducted in which the nucleotides in the proposed pseudoknot were simultaneously mutated and functional mutants were selected and analyzed. Genetic analysis revealed that the particular nucleotide present at each position except 524 was not exclusively critical to the selection of functional mutants. It also indicated that basepairing interactions between the positions 505-507 and 524-526 were required for ribosomal function, and much weaker base-pairing interactions than those of the wild-type also allowed high ribosomal function. Our results support the hypothesis that the 530 pseudoknot structure may undergo a 'conformational switch' between folded and unfolded states during certain stages of the protein synthesis process by interacting with other ligands present in its environment.

POLYMERASE CHAIN REACTION AND RESTRICTION FRAGMENT LENGTH POLYMORPHISM OF 16S RIBOSOMAL DNA OF STREPTOCOCCI ISOLATED FROM INFECTED ROOT CANALS (감염 근관에서 분리된 연쇄구균의 16S Ribosomal DNA 중합효소 연쇄반응과 제한효소 절단길이 다형성에 관한 연구)

  • Jung, Hee-Il;Im, Mi-Kyung
    • Restorative Dentistry and Endodontics
    • /
    • v.20 no.2
    • /
    • pp.577-609
    • /
    • 1995
  • Bacteria have been regarded as one of the most important factors in pulpal and periapical diseases. Streptococci are frequently isolated facultative anaerobes in infected root canals. Recently molecular biological techniques have been rapidly progressed. This study was designed to apply the molecular biological tools to the identification and classification of streptococci in the endodontic microbiology. Streptococci isolated from infected root canals were identified with both Vitek Systems and API 20 STREP. Identification results were somewhat different in several strains of streptococci. Eighteen streptococci and enterococcal was difficult so to digest plasmid DNA using Hind III and EcoRI to differentiate strains by restriction enzyme analysis of plasmid DNA. 16S rDNA of chromosome was amplified by polymerase chain reaction(PCR) and then restricition fragment length polymorphism(RFLP) using several restriction enzymes was observed. The molecular mass of 16S rDNA of chromosomal DNA was approximately 1.4kb. There were three to five RFLP patterns using eight restriction enzymes. RFLP patterns digested with CfoI which recognizes four base sequences were identical in all stains. Hind III which recognizes six base sequences could not digest the 16S rDNA. Restriction enzymes which recognize five base sequences were suitable for RFLP pattern analysis. At least three different restriction enzymes were needed to compare each strains. 16S rDNA PCR-RFLP was simple and rapid to differentiate and classify strains and could be used in the epidemiological study of root canal infections.

  • PDF

Morphological and Molecular Classifications of Genus Pholis

  • Lee, Sung-Hoon;Jang, Yo-Soon;Baik, Chung-Boo;Han, Kyeong-Ho;Myung, Jung-Goo;Lee, Jin-Hee;Choi, Sang-Duk;Kim, Seon-Jae;Kim, Jong-Oh;Hwang, Jae-Ho
    • Animal cells and systems
    • /
    • v.13 no.4
    • /
    • pp.453-460
    • /
    • 2009
  • Morphological and molecular classifications were attempted in an effort to establish species-specific classifications of three species of the genus Pholis in Korea; these species were subjected to morphological and molecular methodologies using body measurements, RFLP, RAPD, and phylogenetic trees using the nucleotide sequences of mitochondrial 16S and 12S ribosomal DNAs, cytochrome c oxidase I, and cytochrome b. The data demonstrated that the three species of genus Pholis are distinct from each other, both morphologically and genetically.

Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

  • Rahman, Md Moshiur;Yagita, Kengi;Kobayashi, Akira;Oikawa, Yosaburo;Hussein, Amjad I.A.;Matsumura, Takahiro;Tokoro, Masaharu
    • Parasites, Hosts and Diseases
    • /
    • v.51 no.4
    • /
    • pp.401-412
    • /
    • 2013
  • Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear subconformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.

Detection of Clostridium difficile by Loop-Mediated Isothermal Amplification (등온증폭법을 이용한 Clostridium difficile 검출)

  • In, Ye-Won;Ha, Su-Jeong;Yang, Seung-Kuk;Oh, Se-Wook
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1326-1330
    • /
    • 2012
  • This study was conducted to develop a loop-mediated isothermal amplification (LAMP) method for the detection of Clostridium difficile. The tested target gene was 16S ribosomal RNA. Five different LAMP primer sets were designed, and LAMP was performed. All primer sets targeting the 16S rRNA gene (BIP, FIP, B3, F3, LF, PF) were determined as positive in tcdA-positive, tcdB-postive ($A^+B^+$) and tcdA-negative, tcdB-negative ($A^-B^-$) Clostridium difficile strains. As the LAMP reaction took less than 80 min and did not require expensive machine such as thermocycler, it can be used as a rapid and simple detection method for foodborne pathogens.

Evaluation of 16S rRNA Databases for Taxonomic Assignments Using a Mock Community

  • Park, Sang-Cheol;Won, Sungho
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.24.1-24.4
    • /
    • 2018
  • Taxonomic identification is fundamental to all microbiology studies. Particularly in metagenomics, which identifies the composition of microorganisms using thousands of sequences, its importance is even greater. Identification is inevitably affected by the choice of database. This study was conducted to evaluate the accuracy of three widely used 16S databases-Greengenes, Silva, and EzBioCloud-and to suggest basic guidelines for selecting reference databases. Using public mock community data, each database was used to assign taxonomy and to test its accuracy. We show that EzBioCloud performs well compared with other existing databases.

Assessment of the gastrointestinal microbiota using 16S ribosomal RNA gene amplicon sequencing in ruminant nutrition

  • Minseok Kim
    • Animal Bioscience
    • /
    • v.36 no.2_spc
    • /
    • pp.364-373
    • /
    • 2023
  • The gastrointestinal (GI) tract of ruminants contains diverse microbes that ferment various feeds ingested by animals to produce various fermentation products, such as volatile fatty acids. Fermentation products can affect animal performance, health, and well-being. Within the GI microbes, the ruminal microbes are highly diverse, greatly contribute to fermentation, and are the most important in ruminant nutrition. Although traditional cultivation methods provided knowledge of the metabolism of GI microbes, most of the GI microbes could not be cultured on standard culture media. By contrast, amplicon sequencing of 16S rRNA genes can be used to detect unculturable microbes. Using this approach, ruminant nutritionists and microbiologists have conducted a plethora of nutritional studies, many including dietary interventions, to improve fermentation efficiency and nutrient utilization, which has greatly expanded knowledge of the GI microbiota. This review addresses the GI content sampling method, 16S rRNA gene amplicon sequencing, and bioinformatics analysis and then discusses recent studies on the various factors, such as diet, breed, gender, animal performance, and heat stress, that influence the GI microbiota and thereby ruminant nutrition.

A STUDY ON THE IDENTIFICATION OF Porphyromonas endodontalis BY PCR USING SPECIES SPECIFIC PRIMERS FOR THE 16S rDNA (16S rDNA sequence에 대한 종특이성 primer를 이용한 중합효소연쇄반응증폭에 의한 Porphyromonas endodontalis의 동정에 관한 연구)

  • Eom, Seung-Hee;Lim, Sung-Sam;Bae, Kwang-Shik
    • Restorative Dentistry and Endodontics
    • /
    • v.24 no.1
    • /
    • pp.13-25
    • /
    • 1999
  • P. endodontalis which was known to be associated with the infected root canals and periapical lesions is very difficult to detect by culture methods or traditional methods. Detection of bacteria using polymerase chain reaction(PCR) for 16S ribosomal DNA(rDNA) is fast, simple, and accurate with relatively small amount of target cells. 16S rDNA consist of conserved regions those are same to all species, and variable regions which represent species specificity. The 16S rDNA sequences of P. endodontalis and P. gingivalis were aligned and two highly variable regions were selected as a pair of species specific oligonucleotide primers for P. endodontalis. And then the pair of primers for PCR amplification was synthesized to identify P. endodontalis. The sequences of the species specific primers for the 16S rDNA of P. endodontalis were as follows ; sense primer[endo1]: 5'-CTATATTCTTCTTTCTCCGCATGGAGGAGG-3' antisense primer[endo2]: 5'-GCATACCTTCGGTCTCCTCTAGCATAT-3' In this study, for the identification of P. endodontalis without culture from the mixed clinical samples, PCR was done with species specific primers for the 16S rDNA sequences of P. endodontalis. The results were as follows : 1. The species specificity of the primers for the 16S rDNA of P. endodntalis was determined by the PCR methods. About 490bp amplicon which was specific only for P. endodntalis was produced with P. endodontalis. No amplicon was produced by PCR with other strains similar to P. endodontalis. 2. The synthesized species specific primers reacted with conventionally identified P. endodontalis which we have in conservative dentistry laboratory. 3. The identification of P. endodontalis using PCR technique with samples collected from infected root canals or periapical lesions was more sensitive than that of culture methods. 4. Seven samples revealed including P. endodontalis by PCR technique. Five of them were related with pains, two of them with sinus tract, three of them with foul odor, and three of them with purulent drainage. P. endodontalis was shown to have great relation with pains.

  • PDF