DOI QR코드

DOI QR Code

Genetic Characterization of Clinical Acanthamoeba Isolates from Japan using Nuclear and Mitochondrial Small Subunit Ribosomal RNA

  • Rahman, Md Moshiur (Department of Parasitology, Graduate School of Medical Science, Kanazawa University) ;
  • Yagita, Kengi (Department of Parasitology, National Institute of Infectious Diseases) ;
  • Kobayashi, Akira (Department of Ophthalmology, Graduate School of Medical Science, Kanazawa University) ;
  • Oikawa, Yosaburo (Department of Medical Zoology, Kanazawa Medical University) ;
  • Hussein, Amjad I.A. (Department of Medical Laboratory Sciences, Faculty of Medicine and Health Sciences, An-Najah National University) ;
  • Matsumura, Takahiro (Department of Parasitology, Graduate School of Medical Science, Kanazawa University) ;
  • Tokoro, Masaharu (Department of Parasitology, Graduate School of Medical Science, Kanazawa University)
  • Received : 2013.05.02
  • Accepted : 2013.06.18
  • Published : 2013.08.31

Abstract

Because of an increased number of Acanthamoeba keratitis (AK) along with associated disease burdens, medical professionals have become more aware of this pathogen in recent years. In this study, by analyzing both the nuclear 18S small subunit ribosomal RNA (18S rRNA) and mitochondrial 16S rRNA gene loci, 27 clinical Acanthamoeba strains that caused AK in Japan were classified into 3 genotypes, T3 (3 strains), T4 (23 strains), and T5 (one strain). Most haplotypes were identical to the reference haplotypes reported from all over the world, and thus no specificity of the haplotype distribution in Japan was found. The T4 sub-genotype analysis using the 16S rRNA gene locus also revealed a clear subconformation within the T4 cluster, and lead to the recognition of a new sub-genotype T4i, in addition to the previously reported sub-genotypes T4a-T4h. Furthermore, 9 out of 23 strains in the T4 genotype were identified to a specific haplotype (AF479533), which seems to be a causal haplotype of AK. While heterozygous nuclear haplotypes were observed from 2 strains, the mitochondrial haplotypes were homozygous as T4 genotype in the both strains, and suggested a possibility of nuclear hybridization (mating reproduction) between different strains in Acanthamoeba. The nuclear 18S rRNA gene and mitochondrial 16S rRNA gene loci of Acanthamoeba spp. possess different unique characteristics usable for the genotyping analyses, and those specific features could contribute to the establishment of molecular taxonomy for the species complex of Acanthamoeba.

Keywords

References

  1. Anderson OR. Laboratory and field-based studies of abundances, small-scale patchiness, and diversity of Gymnamoebae in soils of varying porosity and organic content: evidence of microbiocoenoses. J Eukaryot Microbiol 2002;49:17-23. https://doi.org/10.1111/j.1550-7408.2002.tb00334.x
  2. Hoffmann R, Michel R. Distribution of free-living amoebae (FLA) during preparation and supply of drinking water. Int J Hyg Envir Heal 2001;203:215-219. https://doi.org/10.1078/S1438-4639(04)70031-0
  3. Rodriguez-Zaragoza S. Ecology of free-living amoebae. Crit Rev Microbiol 1994; 20: 225-241. https://doi.org/10.3109/10408419409114556
  4. Jonckheere JF, Michel R. Species identification and virulence of Acanthamoeba strains from human nasal mucosa. Parasitol Res 1988;74:314-316. https://doi.org/10.1007/BF00539451
  5. Greub G, Raoult D. Microorganisms resistant to free-living amoebae. Clin Microbiol Rev 2004; 17: 413-433. https://doi.org/10.1128/CMR.17.2.413-433.2004
  6. Martinez AJ, Visvesvara GS. Free-living, amphizoic and opportunistic amebas. Brain Pathol 1997; 7: 583-598. https://doi.org/10.1111/j.1750-3639.1997.tb01076.x
  7. Seal DV. Acanthamoeba keratitis update-incidence, molecular epidemiology and new drugs for treatment. Eye 2003; 17: 893-905. https://doi.org/10.1038/sj.eye.6700563
  8. Jones DB. Acanthamoeba-the ultimate opportunist? Am J Ophthalmol 1986; 102: 527-530.
  9. Cheng KH, Leung SL, Hoekman HW, Beekhuis WH, Mulder PG, Geerards AJ, Kijlstra A. Incidence of contact-lens-associated microbial keratitis and its related morbidity. Lancet 1999; 354: 181- 185. https://doi.org/10.1016/S0140-6736(98)09385-4
  10. Stapleton F, Keay L, Edwards K, Naduvilath T, Dart JK, Brian G, Holden BA. The incidence of contact lens-related microbial keratitis in Australia. Ophthalmology 2008; 115: 1655-1662. https://doi.org/10.1016/j.ophtha.2008.04.002
  11. Thebpatiphat N, Hammersmith KM, Rocha FN, Rapuano CJ, Ayres BD, Laibson PR, Eagle RCJ, Cohen EJ. Acanthamoeba keratitis: a parasite on the rise. Cornea 2007; 26: 701-706. https://doi.org/10.1097/ICO.0b013e31805b7e63
  12. Ishibashi Y, Matsumoto Y, Watanabe R, Yasuraoka K, Ishii K, Koyama T, Endo T, Yagita K. Case of Acanthamoeba keratitis. Nippon Ganka Gakkai Zasshi 1988; 92: 963-972 (in Japanese).
  13. Stothard DR, Schroeder-Diedrich JM, Awwad MH, Gast RJ, Ledee DR, Rodriguez-Zaragoza S, Dean CL, Fuerst PA, Byers TJ. The evolutionary history of the genus Acanthamoeba and the identification of eight new 18S rRNA gene sequence types. J Eukaryot Microbiol 1998; 45: 45-54. https://doi.org/10.1111/j.1550-7408.1998.tb05068.x
  14. Pussard M, Pons R. Morphologie de la paroi kystique et taxonomie du genre Acanthamoeba (Protozoa, Amoebida). Protistologica 1977; 8: 557-598.
  15. Khan NA. Acanthamoeba biology and pathogenesis. Norfolk, UK. Caister Academic Press. 2009.
  16. Schuster FL, Visvesvara GS. Free-living amoebae as opportunistic and non-opportunistic pathogens of humans and animals. Int J Parasitol 2004;34:1001-1027. https://doi.org/10.1016/j.ijpara.2004.06.004
  17. Corsaro D, Venditti D. Phylogenetic evidence for a new genotype of Acanthamoeba (Amoebozoa, Acanthamoebida). Parasitol Res 2010;107:233-238. https://doi.org/10.1007/s00436-010-1870-6
  18. Nuprasert W, Putaporntip C, Pariyakanok L, Jongwutiwes S. Identification of a novel T17 genotype of Acanthamoeba from environmental isolates and T10 genotype causing keratitis in Thailand. J Clin Microbiol 2010;48:4636-4640. https://doi.org/10.1128/JCM.01090-10
  19. Schroeder JM, Booton GC, Hay J, Niszl IA, Seal DV, Markus MB, Fuerst PA, Byers TJ. Use of subgenic 18S ribosomal DNA PCR and sequencing for genus and genotype identification of Acanthamoebae from humans with keratitis and from sewage sludge. J Clin Microbiol 2001; 39: 1903-1911. https://doi.org/10.1128/JCM.39.5.1903-1911.2001
  20. Yu HS, Hwang MY, Kim TO, Yun HC, Kim TH, Kong HH, Chung D-I. Phylogenetic relationships among Acanthamoeba spp. based on PCR-RFLP analyses of mitochondrial small subunit rRNA gene. Korean J Parasitol 1999;37:181-188. https://doi.org/10.3347/kjp.1999.37.3.181
  21. Ledee DR, Booton GC, Awwad MH, Sharma S, Aggarwal RK, Niszl IA, Markus MB, Fuerst PA, Byers TJ. Advantages of using mitochondrial 16S rDNA sequences to classify clinical isolates of Acanthamoeba. Invest Ophthalmol Vis Sci 2003;44:1142-1149. https://doi.org/10.1167/iovs.02-0485
  22. Kobayashi A, Ishibashi Y, Oikawa Y, Yokogawa H, Sugiyama K. In vivo and ex vivo laser confocal microscopy findings in patients with early-stage Acanthamoeba keratitis. Cornea 2008; 27: 439-445. https://doi.org/10.1097/ICO.0b013e318163cc77
  23. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 2011; 28: 2731-2739. https://doi.org/10.1093/molbev/msr121
  24. Uno T, Fukuda M, Ohashi Y, Shimomura Y, Ishibashi Y, Inaba M, Inoue Y, Ueda K, Eguchi H, Shiraishi A, Sotozono C, Tagawa Y, Chikama T. Survey of severe contact lens-associated microbial keratitis in Japan. Nippon Ganka Gakkai Zasshi 2011; 115: 107- 115 (in Japanese).
  25. Edagawa A, Kimura A, Kawabuchi-Kurata T, Kusuhara Y, Karanis P. Isolation and genotyping of potentially pathogenic Acanthamoeba and Naegleria species from tap-water sources in Osaka, Japan. Parasitol Res 2009; 105: 1109-1117. https://doi.org/10.1007/s00436-009-1528-4
  26. Abe N, Kimata I. Genotyping of Acanthamoeba isolates from corneal scrapings and contact lens cases of Acanthamoeba keratitis patients in Osaka, Japan. Jpn J Infect Dis 2010; 63: 299-301.
  27. Inoue Y, Ohashi Y, Eguchi H, Takaoka-Sugihara N, Chikama T-i, Sotozono C, Shimomura Y, Yagita K, Nozaki T. Multicenter molecular epidemiological study of clinical isolates related with Acanthamoeba keratitis (interim report). Atarashii Ganka 2012; 29: 397-402 (in Japanese).
  28. Spanakos G, Tzanetou K, Miltsakakis D, Patsoula E, Malamou- Lada E, Vakalis NC. Genotyping of pathogenic Acanthamoebae isolated from clinical samples in Greece-report of a clinical isolate presenting T5 genotype. Parasitol Int 2006; 55: 147-149. https://doi.org/10.1016/j.parint.2005.12.001
  29. Ledee DR, Iovieno A, Miller D, Mandal N, Diaz M, Fell J, Fini ME, Alfonso EC. Molecular identification of T4 and T5 genotypes in isolates from Acanthamoeba keratitis patients. J Clin Microbiol 2009; 47: 1458-1462. https://doi.org/10.1128/JCM.02365-08
  30. Chung DI, Yu HS, Hwang MY, Kim TH, Kim TO, Yun HC, Kong HH. Subgenus classification of Acanthamoeba by riboprinting. Korean J Parasitol 1998; 36: 69-80. https://doi.org/10.3347/kjp.1998.36.2.69
  31. Kong HH. Molecular phylogeny of Acanthamoeba. Korean J Parasitol 2009; 47: S21-S28. https://doi.org/10.3347/kjp.2009.47.S.S21
  32. Gast RJ, Ledee DR, Fuerst PA, Byers TJ. Subgenus systematics of Acanthamoeba: four nuclear 18S rDNA sequence types. J Eukaryot Microbiol 1996; 43: 498-504. https://doi.org/10.1111/j.1550-7408.1996.tb04510.x
  33. Lahr DJ, Parfrey LW, Mitchell EA, Katz LA, Lara E. The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms. Proceedings of the Royal Society B: Biological Sciences 2011; 278: 2081-2090. https://doi.org/10.1098/rspb.2011.0289
  34. Malik SB, Ramesh MA, Hulstrand AM, Logsdon JM. Protist homologs of the meiotic spo11 gene and topoisomerase VI reveal an evolutionary history of gene duplication and lineage-specific loss. Mol Biol Evol 2007; 24: 2827-2841. https://doi.org/10.1093/molbev/msm217
  35. Gunderson JH, Sogin ML. Length variation in eukaryotic rRNAs: small subunit rRNAs from the protists Acanthamoeba castellanii and Euglena gracilis. Gene 1986; 44: 63-70. https://doi.org/10.1016/0378-1119(86)90043-0
  36. Lonergan KM, Gray MW. The ribosomal RNA gene region in Acanthamoeba castellanii mitochondrial DNA: a case of evolutionary transfer of introns between mitochondria and plastids? J Mol Biol 1994; 239: 476-499. https://doi.org/10.1006/jmbi.1994.1390
  37. Ledee DR, Hay J, Byers TJ, Seal DV, Kirkness CM. Acanthamoeba griffini. Molecular characterization of a new corneal pathogen. Invest Ophthalmol Vis Sci 1996; 37: 544-550.
  38. Nagyova V, Nagy A, Timko J. Morphological, physiological and molecular biological characterisation of isolates from first cases of Acanthamoeba keratitis in Slovakia. Parasitol Res 2010; 106: 861-872. https://doi.org/10.1007/s00436-010-1731-3
  39. Dupuy M, Mazoua S, Berne F, Bodet C, Garrec N, Herbelin P, Menard-Szczebara F, Oberti S, Rodier MH, Soreau S, Wallet F, Hechard Y. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. Water Res 2011; 45: 1087-1094. https://doi.org/10.1016/j.watres.2010.10.025
  40. Booton GC, Visvesvara GS, Byers TJ, Kelly DJ, Fuerst PA. Identification and distribution of Acanthamoeba species genotypes associated with nonkeratitis infections. J Clin Microbiol 2005; 43: 1689-1693. https://doi.org/10.1128/JCM.43.4.1689-1693.2005
  41. Horn M, Fritsche TR, Gautom RK, Schleifer KH, Wagner M. Novel bacterial endosymbionts of Acanthamoeba spp. related to the Paramecium caudatum symbiont Caedibacter caryophilus. Environ Microbiol 1999; 1: 357-367. https://doi.org/10.1046/j.1462-2920.1999.00045.x
  42. Gast RJ. Development of an Acanthamoeba-specific reverse dotblot and the discovery of a new ribotype. J Eukaryot Microbiol 2001; 48: 609-615. https://doi.org/10.1111/j.1550-7408.2001.tb00199.x
  43. Hewett MK, Robinson BS, Monis PT, Saint CP. Identification of a new Acanthamoeba 18S rRNA gene sequence type, corresponding to the species Acanthamoeba jacobsi Sawyer, Nerad and Visvesvara, 1992 (Lobosea: Acanthamoebidae). Acta Protozool 2003; 42: 325-329.
  44. Liu H, Moon EK, Yu HS, Jeong HJ, Hong YC, Kong HH, Chung DI. Evaluation of taxonomic validity of four species of Acanthamoeba: A. divionensis, A. paradivionensis, A. mauritaniensis, and A. rhysodes, inferred from molecular analyses. Korean J Parasitol 2005; 43: 7-13. https://doi.org/10.3347/kjp.2005.43.1.7

Cited by

  1. Morphological Features and In Vitro Cytopathic Effect of Acanthamoeba griffini Trophozoites Isolated from a Clinical Case vol.2014, pp.None, 2014, https://doi.org/10.1155/2014/256310
  2. Isolation and Genotyping of Acanthamoeba spp. as Neglected Parasites in North of Iran vol.54, pp.4, 2013, https://doi.org/10.3347/kjp.2016.54.4.447
  3. Isolates from ancient permafrost help to elucidate species boundaries in Acanthamoeba castellanii complex (Amoebozoa: Discosea) vol.73, pp.None, 2020, https://doi.org/10.1016/j.ejop.2020.125671