• 제목/요약/키워드: 16S rRNA bacterial identification

검색결과 118건 처리시간 0.027초

해수 분리 세균 Bacillus sp. DH-9의 항균활성 (Antibacterial Activity of Bacillus sp. DH-9 Isolated from Sea Water)

  • 김영만;김도균;김남희;변태환;김아라;이은우;권현주;김병우
    • 한국수산과학회지
    • /
    • 제43권1호
    • /
    • pp.33-38
    • /
    • 2010
  • Emerging of antibiotic resistance of pathogenic bacteria is now a very serious problem in the clinics to treat the diseases, which have been easy to cure by antibiotic treatments before. Unfortunately, antibiotics developed till now are not effective any more against the resistant bacteria. Lots of efforts to discover new antibiotics having novel and unique structures and functions are really urgent and undergoing in the whole world. In this study, we tried to screen and isolate Same unique bacterial strains producing antibacterial substances from the sea water, which is the poor environment for bacteria 10 make their growing. Three bacterial strains among 916 strains isolated showed inhibition clear zone on the marine agar plate growing pathogenic bacteria including Acinetobacter baumannii, Edwardsiella tarda, Pseudomonas aeruginosa, Staphylococcus aureus, Salmonella enterica. One of them, which was identified as Bacillus sp. DH-9 from 16S rRNA gene analysis, showed especially considerable antibacterial activity against S. aureus which is notorious for methicillin resistant S. aureus (MRSA). The growth of S. aureus was totally inhibited when the supernatant of Bacillus sp. DH-9 culture was treated on.

중성 Lipase를 생산하는 Bacillus subtilis JKA-3의 분리 동정 및 효소 특성 (Isolation of Lipase Producing Bacillus subtilis and Some Characteristics of the Enzyme)

  • 조지원;허성호;한용수;김지연
    • Journal of Applied Biological Chemistry
    • /
    • 제52권3호
    • /
    • pp.151-156
    • /
    • 2009
  • As part of an investigation to identify microorganisms that are biotechnologically interesting for industrial application, we isolated a bacterial strain from Chungkookjang that produces extracellular neutral lipase. In addition, the crude enzyme was characterized. This isolated strain, designated as JKA-3 was identified as Bacillus subtilis JKA-3 based on morphological, physiological and biochemical characteristics, as well as phylogenetic analysis using 16S rRNA gene sequence. The cells were rod-shaped and $0.6-0.8{\times}2.0-2.3\;{\mu}m$ in size. Optimal growth conditions were $35-40^{\circ}C$ and pH 6.0-8.0. The isolate was able to grow in up to 0-10.0% (w/v) NaCl. Optimal activity conditions of the crude lipase fraction of B. subtilis JKA-3 were pH of 7.0 at $35^{\circ}C$. This enzyme was stable in the pH ranging 6.0-8.0.

Molecular Identification of Bacterial Species Present on Toothbrushes

  • Kwon, Ye Won;Lee, Si Young
    • International Journal of Oral Biology
    • /
    • 제39권4호
    • /
    • pp.215-220
    • /
    • 2014
  • Toothbrushes play an essential role in oral hygiene. However, they can be significant in microbial transmission and can increase the risk of infection, since they can serve as a reservoir for microorganisms in healthy, oral-diseased and medically ill adults. This study was conducted to evaluate toothbrush contamination in six toothbrushes donated from four people. Two participants each supplied two toothbrushes - one used in the bathroom and one used in the workplace. The other two people each donated two toothbrushes used in the workplace. Polymerase chain reaction was used to construct a 16S rRNA clone library. Sequences of cloned DNA were compared with those from the reference organisms provided by GenBank. A total 120 clones, representing 20 clones for each toothbrush, were analyzed. They are composed of six pylum, 46 genera and 79 species. The most dominant species were Streptococcus oralis, Streptococcus parasanguinis and Haemophilus parainfluenzae. Enterobacter and Escherichia were recovered from toothbrushes used domestically. Toothbrushes used in the workplace did not contain Enterobacteria.

Cultivation-Dependent and -Independent Characterization of Microbial Community Producing Polyhydroxyalkanoates from Raw Glycerol

  • Ciesielski, Slawomir;Pokoj, Tomasz;Klimiuk, Ewa
    • Journal of Microbiology and Biotechnology
    • /
    • 제20권5호
    • /
    • pp.853-861
    • /
    • 2010
  • High substrate costs decrease the profitability of polyhydroxyalkanoates (PHAs) production, and thus low-cost carbon substrates coming from agricultural and industrial residuals are tested for the production of these biopolymers. Among them, crude glycerol, formed as a by-product during biodiesel production, seems to be the most promising source of carbon. The object of this study was to characterize the mixed population responsible for the conversion of crude glycerol into PHAs by cultivation-dependent and -independent methods. Enrichment of the microbial community was monitored by applying the Ribosomal Intergenic Spacer Analysis (RISA), and the identification of community members was based on 16S rRNA gene sequencing of cultivable species. Molecular analysis revealed that mixed populations consisted of microorganisms affiliated with four bacterial lineages: ${\alpha}$, ${\gamma}$-Proteobacteria, Actinobacteria, and Bacteroides. Among these, three Pseudomonas strains and Rhodobacter sp. possessed genes coding for polyhydroxyalkanoates synthase. Comparative analysis revealed that most of the microorganisms detected by direct molecular analysis were obtained by the traditional culturing method.

Cutaneous Microflora from Geographically Isolated Groups of Bradysia agrestis, an Insect Vector of Diverse Plant Pathogens

  • Park, Jong Myong;You, Young-Hyun;Park, Jong-Han;Kim, Hyeong-Hwan;Ghim, Sa-Youl;Back, Chang-Gi
    • Mycobiology
    • /
    • 제45권3호
    • /
    • pp.160-171
    • /
    • 2017
  • Larvae of Bradysia agrestis, an insect vector that transports plant pathogens, were sampled from geographically isolated regions in Korea to identify their cutaneous fungal and bacterial flora. Sampled areas were chosen within the distribution range of B. agrestis; each site was more than 91 km apart to ensure geographical segregation. We isolated 76 microbial (fungi and bacteria) strains (site 1, 29; site 2, 29; site 3, 18 strains) that were identified on the basis of morphological differences. Species identification was molecularly confirmed by determination of universal fungal internal transcribed spacer and bacterial 16S rRNA gene sequences in comparison to sequences in the EzTaxon database and the NCBI GenBank database, and their phylogenetic relationships were determined. The fungal isolates belonged to 2 phyla, 5 classes, and 7 genera; bacterial species belonged to 23 genera and 32 species. Microbial diversity differed significantly among the geographical groups with respect to Margalef's richness (3.9, 3.6, and 4.5), Menhinick's index (2.65, 2.46, and 3.30), Simpson's index (0.06, 0.12, and 0.01), and Shannon's index (2.50, 2.17, and 2.58). Although the microbial genera distribution or diversity values clearly varied among geographical groups, common genera were identified in all groups, including the fungal genus Cladosporium, and the bacterial genera Bacillus and Rhodococcus. According to classic principles of co-evolutionary relationship, these genera might have a closer association with their host insect vector B. agrestis than other genera identified. Some cutaneous bacterial genera (e.g., Pseudomonas) displaying weak interdependency with insect vectors may be hazardous to agricultural environments via mechanical transmission via B. agrestis. This study provides comprehensive information regarding the cutaneous microflora of B. agrestis, which can help in the control of such pests for crop management.

Isolation and Identification of Endophytic Bacteria with Plant Growth Promoting Activity and Biocontrol Potential from Wild Pistachio Trees

  • Etminani, Faegheh;Harighi, Behrouz
    • The Plant Pathology Journal
    • /
    • 제34권3호
    • /
    • pp.208-217
    • /
    • 2018
  • In this study, samples were collected from the leaves and stems of healthy wild Pistachio trees (Pistacia atlantica L.) from various locations of Baneh and Marivan regions, Iran. In total, 61 endophytic bacteria were isolated and grouped according to phenotypic properties. Ten selected isolates from each group were further identified by partial sequencing of the 16S rRNA gene. Based on the results, isolates were identified as bacteria belonging to Pseudomonas, Stenotrophomonas, Bacillus, Pantoea and Serratia genus. The ability of these isolates was evaluated to phytohormone production such as auxin and gibberellin, siderophore production, phosphate solubilization, atmospheric nitrogen fixation, protease and hydrogen cyanide production. All strains were able to produce the plant growth hormone auxin and gibberellin in different amounts. The majority of strains were able to solubilize phosphate. The results of atmospheric nitrogen fixation ability, protease and siderophore production were varied among strains. Only Ba66 could produce a low amount of hydrogen cyanide. The results of biocontrol assay showed that Pb78 and Sp15 strains had the highest and lowest inhibition effects on bacterial plant pathogens, Pseudomonas syringae pv. syringae Pss20 and Pseudomonas tolaasii Pt18 under in vitro condition. Pb3, Pb24 and Pb71 strains significantly promote root formation on carrot slices. To our knowledge this is the first report of the isolation of endophytic bacterial strains belonging to Pantoea, Bacillus, Pseudomonas, Serratia and Stenotrophomonas genus from wild pistachio trees with plant growth promoting potential and biocontrol activity.

Isolation and molecular identification of Vibrio harveyi from the look down fish (Selene vomer)

  • Jun, Jin-Woo;Lee, Young-Ran;Giri, Sib Sankar;Kim, Hyoun-Joong;Yun, Sae-Kil;Chi, Cheng;Kim, Sang-Guen;Koh, Jeong-Rack;Jung, Ji-Yun;Lee, Byeong-Chun;Park, Se-Chang
    • 대한수의학회지
    • /
    • 제56권2호
    • /
    • pp.125-127
    • /
    • 2016
  • Gradual mortality of look down fish (Selene vomer) was observed in a private aquarium in Seoul, showing abnormal swimming behavior and lethargy. A bacterial pathogen from kidney was cultured, identified, and confirmed as Vibrio harveyi using Vitek System 2 and 16S rRNA gene sequencing. A predominant bacterial strain, SNUVh-LW2 was proved to be most closely related to isolates from China by phylogenetic analysis with minimum evolution method. Also, tetracycline was considered as the most sensitive antibiotic agent via antibiotic susceptibility test. The group of fish was treated according to the diagnostic result and no more mortality was observed.

Potentiality of Beneficial Microbe Bacillus siamensis GP-P8 for the Suppression of Anthracnose Pathogens and Pepper Plant Growth Promotion

  • Ji Min Woo;Hyun Seung Kim;In Kyu Lee;Eun Jeong Byeon;Won Jun Chang;Youn Su Lee
    • The Plant Pathology Journal
    • /
    • 제40권4호
    • /
    • pp.346-357
    • /
    • 2024
  • This study was carried out to screen the antifungal activity against Colletotrichum acutatum, Colletotrichum dematium, and Colletotrichum coccodes. Bacterial isolate GP-P8 from pepper soil was found to be effective against the tested pathogens with an average inhibition rate of 70.7% in in vitro dual culture assays. 16S rRNA gene sequencing analysis result showed that the effective bacterial isolate as Bacillus siamensis. Biochemical characterization of GP-P8 was also performed. According to the results, protease and cellulose, siderophore production, phosphate solubilization, starch hydrolysis, and indole-3-acetic acid production were shown by the GP-P8. Using specific primers, genes involved in the production of antibiotics, such as iturin, fengycin, difficidin, bacilysin, bacillibactin, surfactin, macrolactin, and bacillaene were also detected in B. siamensis GP-P8. Identification and analysis of volatile organic compounds through solid phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) revealed that acetoin and 2,3-butanediol were produced by isolate GP-P8. In vivo tests showed that GP-P8 significantly reduced the anthracnose disease caused by C. acutatum, and enhanced the growth of pepper plant. Reverse transcription polymerase chain reaction analysis of pepper fruits revealed that GP-P8 treated pepper plants showed increased expression of immune genes such as CaPR1, CaPR4, CaNPR1, CaMAPK4, CaJA2, and CaERF53. These results strongly suggest that GP-P8 could be a promising biocontrol agent against pepper anthracnose disease and possibly a pepper plant growth-promoting agent.

Isolation, Identification and Use of Bacterial Strain Ochrobactrum intermedium PDB-3 for Degradation of the Pesticide Chlorpyrifos

  • Diyorbek Kosimov;Lyudmila Zaynitdinova;Aziza Mavjudova;Muzaffar Muminov;Oybek Shukurov
    • 한국미생물·생명공학회지
    • /
    • 제52권1호
    • /
    • pp.44-54
    • /
    • 2024
  • One of the serious modern environmental problems is pollution caused by highly toxic pesticides. Only small amounts of applied pesticides reach their target, and the rest ends up in soil and water. Chlorpyrifos is a toxic, broad-spectrum organophosphate insecticide. In humans, chlorpyrifos inhibits acetylcholinesterase (AChE) in the peripheral and central nervous system, and particularly in children, small amounts of this pesticide cause neurotoxic damage. As the toxic effects of chlorpyrifos and its persistence in the environment require its removal from contaminated sites, it is essential to study the biological diversity of chlorpyrifos-degrading microorganisms. In this study, we sought to determine the chlorpyrifos-degrading ability of the bacterial strain Ochrobactrum intermedium PDB-3. This strain was isolated from soil contaminated with various pesticides and identified as PDB-3 based on morpho-cultural characteristics, MALDI-TOF MS, and 16S rRNA. Studies were conducted for 30 days in sterile soils containing initial concentrations of 50, 75, 100, and 125 mg/kg of chlorpyrifos. To determine the degradation of chlorpyrifos, a liquid culture of the strain was added to the soil at three optical densities: 0, and after 24 and 48 h (OD = 0.03, 0.2 and 0.32). Using GX-MS, we determined that chlorpyrifos was converted to 3,5,6-trichloro-2-pyridinol (TCP). We also found that with increasing optical density, rapid degradation of the initial concentration of chlorpyrifos occurred. Sterile soil without strain PDB-3 was used as a control sample.

Mucilaginibacter aquariorum sp. nov., Isolated from Fresh Water

  • Ve Van Le;So-Ra Ko;Mingyeong Kang;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권12호
    • /
    • pp.1553-1560
    • /
    • 2022
  • A Gram-stain-negative, rod-shaped bacterial strain, JC4T, was isolated from a freshwater sample and determined the taxonomic position. Initial identification based on 16S rRNA gene sequences revealed that strain JC4T is affiliated to the genus Mucilaginibacter with a sequence similarity of 97.97% to Mucilaginibacter rigui WPCB133T. The average nucleotide identity and digital DNA-DNA hybridization values between strain JC4T and Mucilaginibacter species were estimated below 80.92% and 23.9%, respectively. Strain JC4T contained summed feature 3 (C16:1 ω7c and/or C16:1 ω6c) and iso-C15:0 as predominant cellular fatty acids. The dominant polar lipids were identified as phosphatidylethanolamine, one unidentified aminophospholipid, one unidentified phospholipid, and two unidentified lipids. The respiratory quinone was MK-7. The genomic DNA G+C content of strain JC4T was determined to be 42.44%. The above polyphasic evidences support that strain JC4T represents a novel species of the genus Mucilaginibacter, for which the name Mucilaginibacter aquariorum sp. nov. is proposed. The type strain is JC4T (= KCTC 92230T = LMG 32715T).