• Title/Summary/Keyword: 16S rRNA Sequencing

Search Result 524, Processing Time 0.028 seconds

Molecular identification of coagulase-negative staphylococci by rpoB sequence typing (rpoB 염기서열 분석을 이용한 응고효소 음성 포도알세균 분자 동정)

  • Seong, Won-Jin;Kim, Danil;Kim, Eun-Kyung;Ko, Dae-Sung;Ro, Younghye;Kim, Jae-Hong;Kwon, Hyuk-Joon
    • Korean Journal of Veterinary Research
    • /
    • v.58 no.1
    • /
    • pp.51-55
    • /
    • 2018
  • Bovine mastitis (BM) has resulted in enormous economic loss in the dairy industry and coagulase-negative staphylococci (CNS) have caused subclinical BM. Although VITEK 2 GP ID card (VITEK 2) has been used for CNS identification, the probability of identification varies. The rpoB sequence typing (RSTing) method has been used for molecular diagnosis and epidemiology of bacterial infections. In this study, we undertook RSTing of CNS and compared the results with those of VITEK2 and 16S rRNA gene sequencing. As compared VITEK2, the molecular-based methods were more reliable for species identification; moreover, RSTing provided more molecular epidemiological information than that from 16S rRNA gene sequencing.

Metagenomic SMRT Sequencing-Based Exploration of Novel Lignocellulose-Degrading Capability in Wood Detritus from Torreya nucifera in Bija Forest on Jeju Island

  • Oh, Han Na;Lee, Tae Kwon;Park, Jae Wan;No, Jee Hyun;Kim, Dockyu;Sul, Woo Jun
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.9
    • /
    • pp.1670-1680
    • /
    • 2017
  • Lignocellulose, composed mostly of cellulose, hemicellulose, and lignin generated through secondary growth of woody plant, is considered as promising resources for biofuel. In order to use lignocellulose as a biofuel, biodegradation besides high-cost chemical treatments were applied, but knowledge on the decomposition of lignocellulose occurring in a natural environment is insufficient. We analyzed the 16S rRNA gene and metagenome to understand how the lignocellulose is decomposed naturally in decayed Torreya nucifera (L) of Bija forest (Bijarim) in Gotjawal, an ecologically distinct environment. A total of 464,360 reads were obtained from 16S rRNA gene sequencing, representing diverse phyla; Proteobacteria (51%), Bacteroidetes (11%) and Actinobacteria (10%). The metagenome analysis using single molecules real-time sequencing revealed that the assembled contigs determined originated from Proteobacteria (58%) and Actinobacteria (10.3%). Carbohydrate Active enZYmes (CAZy)- and Protein families (Pfam)-based analysis showed that Proteobacteria was involved in degrading whole lignocellulose, and Actinobacteria played a role only in a part of hemicellulose degradation. Combining these results, it suggested that Proteobacteria and Actinobacteria had selective biodegradation potential for different lignocellulose substrates. Thus, it is considered that understanding of the systemic microbial degradation pathways may be a useful strategy for recycle of lignocellulosic biomass, and the microbial enzymes in Bija forest can be useful natural resources in industrial processes.

Axenic Isolation and 16S rRNA Gene Sequence of the Cyanobacterium Microcystis aeruginosa in Downstream of Nakdong River (낙동강 하류에 분포하는 남조류 Microcystis aeruginosa의 무균분리 및 16S rRNA 유전자 염기서열분석)

  • 박홍기;정은영;이유정;정종문;홍용기
    • Journal of Life Science
    • /
    • v.12 no.2
    • /
    • pp.158-163
    • /
    • 2002
  • For axenic isolation of the cyanobacterium Microcystis aeruginosa, water bloom at the Mulgum station from the Nakdong River was pretreated by shaking with distilled water. Removal of bacteria was accomplished using antibiotics (150 $\mu$g/$m\ell$ ampicillin and 25 $\mu$g/$m\ell$ neomycin) and colonizing on CB solid medium prepared from 0.7% agarose at 3$0^{\circ}C$ under 40 $\mu$ mol m$^{-2}$ s$^{-1}$ light. Among 26 strains of the Microcystis species, only three strains were axenically established. The three strains were examined by PCR-amplified 16S rRNA gene and 16S rRNA sequencing. The similarities were 99.5 ~100% with M. aeruginosa AF 139292.

Characterization of beer-spoilage microorganism and its rapid detection by specific PCR primer (맥주오염미생물의 동정과 specific PCR primer의한 신속한 검출 방법)

  • Lee, Taek-In;Choi, Shin-Geon
    • Journal of Industrial Technology
    • /
    • v.28 no.A
    • /
    • pp.141-147
    • /
    • 2008
  • Several contaminated bacteria such as Lactobacillus brevis and Pediococcus damnosus in beer production cause beer spoilage by producing off flavours and turbidity. Detection of these organisms is complicated by the strict anaerobic conditions and lengthy incubation times required for their cultivation, consequently there is a need for more rapid detection methods. Recently, two contaminated strains were isolated from vessel of beer production and identified as Lactobacillus species by API kit identificaton as well as 16S-23S ITS sequencing analyses. Two isolated strains were named as Lactobacillus sp. HLA1 and Lactobacillus HLB2, respectively. A polymerase chain reaction (PCR) method was developed for the rapid and specific detection of Lactobacillus sp.. Two sets of primer pairs (HLA1-F/HLA1-R and HLB2-F/HLB2-R) were designed for the amplification of a 1576 base pair (bp) fragment of the HLA1 16S-23S rRNA gene and 1888 bp fragement of the HLB2 16S-23S rRNA. Amplified PCR products were highly specific to detect corresponding bacteria when other contaminated strains were used as PCR templates. However, detection of both strains were limited when $100{\mu}{\ell}$ of cultured samples were mixed with $100m{\ell}$ of beer sample in arbitrary manner. The sensitivity of the assay still needs to be improved for direct detection of the small amounts of bacteria present in beer.

  • PDF

Biphasic Study to Characterize Agricultural Biogas Plants by High-Throughput 16S rRNA Gene Amplicon Sequencing and Microscopic Analysis

  • Maus, Irena;Kim, Yong Sung;Wibberg, Daniel;Stolze, Yvonne;Off, Sandra;Antonczyk, Sebastian;Puhler, Alfred;Scherer, Paul;Schluter, Andreas
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.2
    • /
    • pp.321-334
    • /
    • 2017
  • Process surveillance within agricultural biogas plants (BGPs) was concurrently studied by high-throughput 16S rRNA gene amplicon sequencing and an optimized quantitative microscopic fingerprinting (QMF) technique. In contrast to 16S rRNA gene amplicons, digitalized microscopy is a rapid and cost-effective method that facilitates enumeration and morphological differentiation of the most significant groups of methanogens regarding their shape and characteristic autofluorescent factor 420. Moreover, the fluorescence signal mirrors cell vitality. In this study, four different BGPs were investigated. The results indicated stable process performance in the mesophilic BGPs and in the thermophilic reactor. Bacterial subcommunity characterization revealed significant differences between the four BGPs. Most remarkably, the genera Defluviitoga and Halocella dominated the thermophilic bacterial subcommunity, whereas members of another taxon, Syntrophaceticus, were found to be abundant in the mesophilic BGP. The domain Archaea was dominated by the genus Methanoculleus in all four BGPs, followed by Methanosaeta in BGP1 and BGP3. In contrast, Methanothermobacter members were highly abundant in the thermophilic BGP4. Furthermore, a high consistency between the sequencing approach and the QMF method was shown, especially for the thermophilic BGP. The differences elucidated that using this biphasic approach for mesophilic BGPs provided novel insights regarding disaggregated single cells of Methanosarcina and Methanosaeta species. Both dominated the archaeal subcommunity and replaced coccoid Methanoculleus members belonging to the same group of Methanomicrobiales that have been frequently observed in similar BGPs. This work demonstrates that combining QMF and 16S rRNA gene amplicon sequencing is a complementary strategy to describe archaeal community structures within biogas processes.

Detection and Potential Abundances of Anammox Bacteria in the Paddy Soil

  • Khanal, Anamika;Lee, Seul;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.39 no.1
    • /
    • pp.26-35
    • /
    • 2020
  • BACKGROUND: Microbes that govern a unique biochemical process of oxidizing ammonia into dinitrogen gas, such as anaerobic ammonium oxidation (anammox) have been reported to play a pivotal role in agricultural soils and in oceanic environments. However, limited information for anammox bacterial abundance and distribution in the terrestrial habitats has been known. METHODS AND RESULTS: Phylogenetic and next-generation sequencing analyses of bacterial 16S rRNA gene were performed to examine potential anammox bacteria in paddy soils. Through clone libraries constructed by using the anammox bacteria-specific primers, some clones showed sequence similarities with Planctomycetes (87% to 99%) and anammox bacteria (94% to 95%). Microbial community analysis for the paddy soils by using Illumina Miseq sequencing of 16S rRNA gene at phylum level was dominated by unclassified Bacteria at 33.2 ± 7.6%, followed by Chloroflexi at 20.4 ± 2.0% and Acidobacteria at 17.0 ± 6.5%. Planctomycetes that anammox bacteria are belonged to was 1.5% (± 0.3) on average from the two paddy soils. CONCLUSION: We suggest evidence of anammox bacteria in the paddy soil. In addition to the relatively well-known microbial processes for nitrogen-cycle, anammox can be a potential contributor on the cycle in terrestrial environments such as paddy soils.

Identification and Distribution of Bacillus Species in Doenjang by Whole-Cell Protein Patterns and 16S rRNA Gene Sequence Analysis

  • Kim, Tae-Woon;Kim, Young-Hoon;Kim, Sung-Eon;Lee, Jun-Hwa;Park, Cheon-Seok;Kim, Hae-Yeong
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.8
    • /
    • pp.1210-1214
    • /
    • 2010
  • Many bacteria are involved in the fermentation of doenjang, and Bacillus species are known to perform significant roles. Although SDS-PAGE has been frequently used to classify and identify bacteria in various samples, the microbial diversity in doenjang has not yet been investigated. This study aims to determine the identity and distribution of dominant Bacillus species in doenjang using SDS-PAGE profiles of whole-cell proteins and 16S rRNA gene sequencing. Reference Bacillus strains yielded differential SDS-PAGE banding patterns that could be considered to be highly specific fingerprints. Grouping of bacterial strains isolated from doenjang samples by whole-cell protein patterns was confirmed by analysis of their 16S rRNA gene sequences. B. subtilis was found to be the most dominant strain in most of the samples, whereas B. licheniformis and B. amyloliquefaciens were less frequently found but were also detected in several samples. The results obtained in this study show that a combined identification method using SDS-PAGE profiles of whole-cell proteins and subsequent 16S rRNA gene sequence analysis could successfully identify Bacillus species isolated from doenjang.

Anaerobic Ammonium-Oxidizing Bacteria in Cow Manure Composting

  • Wang, Tingting;Cheng, Lijun;Zhang, Wenhao;Xu, Xiuhong;Meng, Qingxin;Sun, Xuewei;Liu, Huajing;Li, Hongtao;Sun, Yu
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.7
    • /
    • pp.1288-1299
    • /
    • 2017
  • Composting is widely used to transform waste into valuable agricultural organic fertilizer. Anaerobic ammonium-oxidizing (anammox) bacteria play an important role in the global nitrogen cycle, but their role in composting remains poorly understood. In the present study, the community structure, diversity, and abundance of anammox bacteria were analyzed using cloning and sequencing methods by targeting the 16S rRNA gene and the hydrazine oxidase gene (hzo) in samples isolated from compost produced from cow manure and rice straw. A total of 25 operational taxonomic units were classified based on 16S rRNA gene clone libraries, and 14 operational taxonomic units were classified based on hzo gene clone libraries. The phylogenetic tree analysis of the 16S rRNA gene and deduced HZO protein sequences from the corresponding encoding genes indicated that the majority of the obtained clones were related to the known anammox bacteria Candidatus "Brocadia," Candidatus "Kuenenia," and Candidatus "Scalindua." The abundances of anammox bacteria were determined by quantitative PCR, and between $2.13{\times}10^5$ and $1.15{\times}10^6$ 16S rRNA gene copies per gram of compost were found. This study provides the first demonstration of the existence of anammox bacteria with limited diversity in cow manure composting.

16S rRNA Gene Sequence-based Microbial Diversity Analyses of the Geothermal Areas of Cisolok, Kamojang, and Likupang in Indonesia (16S rRNA 분석을 통한 인도네시아의 Cisolok, Kamojang, Likupang 지열지대 내 미생물 다양성 분석)

  • Seo, Myung-Ji;Kim, Jeong-Nyeo;Pyun, Yu-Ryang
    • Microbiology and Biotechnology Letters
    • /
    • v.40 no.3
    • /
    • pp.268-273
    • /
    • 2012
  • Microbial diversity analyses were performed in several geothermal areas in Indonesia using a culture-independent approach with 16S rRNA gene sequencing. All areas and the majority of samples were noted as being affiliated with Proteobacteria. In addition, unclassified bacteria with no phylum affiliation were detected at an incidence rate of 20.0-26.5% in every location. The majority groupings in the geothermal hot stream in Cisolok belonged to ${\beta}$-Proteobacteria (27.1%) and Cyanobacteria (11.0%), whereas the majority from the volcanic area in Kamojang was ${\gamma}$-Proteobacteria (51.5%) followed by Aquificales (12.9%). The predominant groups around an underwater thermal vent in the sea at Likupang were ${\gamma}$-Proteobacteria (33.3%) and then Bacteroidetes (27.6%). This detailed microbial community analyses of each area strongly support a possible association with plausible community groups and environmental habitats, such as extremely geothermal or marine habitats. This study has significantly contributed to the expansion of scientific knowledge of the microbial community in Indonesia.

Eight unrecorded bacterial species isolated from soil and marine sediment in Korea

  • Kim, Minji;Lee, Ki-Eun;Cha, In-Tae;Lee, Byoung-Hee;Park, Soo-Je
    • Journal of Species Research
    • /
    • v.9 no.4
    • /
    • pp.339-345
    • /
    • 2020
  • The Earth contains billions of microbial species, although the vast majority cannot be cultured in laboratories and are thus considered unidentified and uncharacterized. Extremophiles are microorganisms that thrive in extreme conditions, including temperature, salinity, and pH. Extremophilic microorganisms have provided important insights for biological, metabolic, and evolutionary studies. Between 2017 and 2019, as part of a comprehensive investigation to identify bacterial species in Korea, eight bacterial strains were isolated from marine and non-marine environments in Jeju Island. These strains were cultured under extreme salinity or pH conditions. Phylogenetic analysis using 16S ribosomal RNA(rRNA) gene sequencing indicated that all eight strains belonged to the phyla Gammaproteobacteria, Bacilli, and Alphaproteobacteria. Based on their high 16S rRNA gene sequence similarities(>98.7%) and the formation of strong monophyletic clades with their closest related species, all isolated strains were considered as an unrecorded strain, previously unidentified species. Gram stain reaction, culture conditions, colony and cell morphology, biochemical characteristics, isolation source, and National Institute of Biological Resources(NIBR) IDs are described in this article. The characterization of these unrecorded strains provides information on microorganisms living in Korea.