Browse > Article
http://dx.doi.org/10.4014/kjmb.1205.05001

16S rRNA Gene Sequence-based Microbial Diversity Analyses of the Geothermal Areas of Cisolok, Kamojang, and Likupang in Indonesia  

Seo, Myung-Ji (Fermentation and Functionality Research Group, Korea Food Research Institute (KFRI))
Kim, Jeong-Nyeo (Department of Biotechnology, Yonsei University)
Pyun, Yu-Ryang (Department of Biotechnology, Yonsei University)
Publication Information
Microbiology and Biotechnology Letters / v.40, no.3, 2012 , pp. 268-273 More about this Journal
Abstract
Microbial diversity analyses were performed in several geothermal areas in Indonesia using a culture-independent approach with 16S rRNA gene sequencing. All areas and the majority of samples were noted as being affiliated with Proteobacteria. In addition, unclassified bacteria with no phylum affiliation were detected at an incidence rate of 20.0-26.5% in every location. The majority groupings in the geothermal hot stream in Cisolok belonged to ${\beta}$-Proteobacteria (27.1%) and Cyanobacteria (11.0%), whereas the majority from the volcanic area in Kamojang was ${\gamma}$-Proteobacteria (51.5%) followed by Aquificales (12.9%). The predominant groups around an underwater thermal vent in the sea at Likupang were ${\gamma}$-Proteobacteria (33.3%) and then Bacteroidetes (27.6%). This detailed microbial community analyses of each area strongly support a possible association with plausible community groups and environmental habitats, such as extremely geothermal or marine habitats. This study has significantly contributed to the expansion of scientific knowledge of the microbial community in Indonesia.
Keywords
Indonesia; microbial diversity; 16S rRNA gene;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hobel, C. F. V., V. T. Marteinsson, S. Hauksdottir, O. Fridjonsson, S. Skirnisdottir, G. O. Hreggvidsson, and J. K. Kristjansson. 2004. Use of low nutrient enrichments to access novel amylase genes in silent diversity of thermophiles. World J. Microbiol. Biotechnol. 20: 801-809.   DOI   ScienceOn
2 Hugenholtz, P., C. Itulle, K. L. Hershberger, and N. R. Pace. 1998. Novel division level bacterial diversity in a Yellowstone hot spring. J. Bacteriol. 180: 366-376.
3 Janssen, P. H. 2006. Identifying the dominant soil bacteria taxa in libraries of 16S rRNA and 16S rRNA genes. Appl. Environ. Microbiol. 72: 1719-1728.   DOI   ScienceOn
4 Karl, D. M. 2002. Microbiological oceanography - hidden in a sea of microbes. Nature 415: 590-591.
5 Kim, J. N., M. J. Seo, E. A. Cho, S. J. Lee, S. B. Kim, C. I. Cheigh, and Y. R. Pyun. 2005. Screening and characterization of an esterase from a metagenomic library. J. Microbiol. Biotechnol. 15: 1067-1072.
6 Kirchman, D. L. 2002. The ecology of Cytophaga-Flavobacteria in aquatic environments. FEMS Microbiol. Ecol. 39: 91-100.
7 Kozubal, M., R. W. Macur, S. Korf, W. P. Taylor, G. G. Ackerman, A. Nagy, and W. P. Inskeep. 2008. Isolation and distribution of a novel iron-oxidizing crenarchaeon from acidic geothermal springs in Yellowstone national park. Appl. Environ. Microbiol. 74: 942-949.   DOI   ScienceOn
8 Lopez-Archilla, A. I., I. Marin, and R. Amils. 2001. Microbial community composition and ecology of an acidic aquatic environment: the Tino River, Spain. Microb. Eol. 41: 20-35.
9 Maugeri, T. L., V. Lentini, C. Gulgliandolo, F. Italiano, S. Cousin, and E. Stackebrandt. 2009. Microbial communities at two shallow hydrothermal vents off Panarea Island (Edolian Islands, Italy). Extremophiles 13: 199-212.   DOI   ScienceOn
10 Maugeri, T. L., V. Lentini, C. Gugliandolo, S. Cousin, and E. Stackebrandt. 2010. Microbial diversity at a hot, shallow-sea hydrothermal vent in the Southern Tyrrhenian sea (Italy). Geomicrobiol. J. 27: 380-390.   DOI   ScienceOn
11 Miller, S. R. and R. W. Castenholz. 2000. Evolution of thermotolerance in hot spring Cyanobacteria of the genus Synechococcus. Appl. Environ. Microbiol. 66: 4222-4229.   DOI   ScienceOn
12 Oren, A. 2002. Diversity of halophilic microorganisms: Environments, phylogency, physiology, and applications. J. Ind. Microbiol. Biotechnol. 28: 56-63.
13 Biers, E. J., S. Sun, and E. C. Howard. 2009. Prokaryotic genomes and diversity in surface ocean waters: interrogating the global ocean sampling metagenome. Appl. Environ. Microbiol. 75: 2221-2229.   DOI   ScienceOn
14 Bintrim, S. B., T. J. Donohue, J. Handelsman, G. P. Roberts, and R. M. Goodman. 1997. Molecular phylogency of Archaea from soil. Proc. Natl. Acad. Sci. USA 94: 277-282.   DOI   ScienceOn
15 Brock, T. D. and J. Gustafson. 1976. Ferric iron reduction by sulfur- and iron-oxidizing bacteria. Appl. Environ. Microbiol. 32: 567-571.
16 Burns, D. G., H. M. Camakaris, P. H. Janssen, and M. L. Dyall-Smith. 2004. Combined use of cultivation-dependent and cultivation-independent methods indicates that members of most haloarchaeal groups in an Australian crystallizer pond are cultivable. Appl. Environ. Microbiol. 70: 5258-5265.   DOI   ScienceOn
17 Goh, K. M., Y. S. Chua, R. N. Z. R. A. Rahman, R. Chan, and R. Illias. 2011. A comparison of conventional and miniprimer PCR to elucidate bacteria diversity in Malaysia Ulu Slim hot spring using 16S rDNA clone library. Rom. Biotechnol. Lett. 16: 6247-6255.
18 Dahllof, I., H. Baillie, and S. Kjelleberg. 2000. rpoB-Based microbial community analysis avoids limitations inherent in 16S rRNA gene intraspecies heterogeneity. Appl. Environ. Microbiol. 66: 3376-3380.   DOI   ScienceOn
19 Friedrich, A. B., H. Merkert, T. Fendert, J. Hacker, P. Proksch, and U. Hentschel. 1999. Microbial diversity in the marine sponge Aplysina cavernicola (formerly Verongia cavernicola) analyzed by fluorescence in situ hybridization (FISH). Mar. Biol. 134: 461-470.   DOI   ScienceOn
20 Ghosh, D., B. Bal, V. K. Kashyap, and S. Pal. 2003. Molecular phylogenetic exploration of bacterial diversity in a Bakreshwar (India) hot spring and culture of Shewanella-related thermophiles. Appl. Environ. Microbiol. 69: 4332-4336.   DOI   ScienceOn
21 Herdianita, N. R. and B. Priadi. 2008. Arsenic and mercury concentrations at several geothermal systems in West Java, Indonesia. ITB J. Sci. 40A: 1-14.
22 Aditiawati, P., H. Yohandini, F. Madayanti, and Akhmaloka. 2009. Microbial diversity of acidic hot spring (Kawah Hujan B) in geothermal field of Kamojang area, west Java-Indonesia. Open Microbiol. J. 3: 58-66.   DOI
23 Amann, R. I., W. Ludwig, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59: 143-169.
24 Aminin, A. L. N., F. M. Warganegara, P. Aditiawati, and Akhmaloka. 2008. Culture-independent and culture-dependent approaches on microbial community analysis at Gedongsongo (GS-2) hot spring. Int. J. Integr. Biol. 2: 145-152.
25 Yin, H., L. Cao, M. Xie, Q. Chen, G. Qiu, J. Zhou, L. Wu, D. Wang, and X. Liu. 2008. Bacterial diversity based on 16S rRNA and gyrB genes at Yinshan mine, China. Syst. Appl. Microbiol. 31: 302-311.   DOI   ScienceOn
26 Park, S. J., C. H. Kang, and S. K. Rhee. 2006. Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J. Microbiol. Biotechnol. 16: 1640-1645.
27 Ruby, E. G., C. O. Wirsen, and H. W. Jannasch. 1981. Chemolithotrophic sulfur-oxidizing bacteria from the Galapagos rift hydrothermal vents. Appl. Environ. Microbiol. 42: 317-324.
28 Wu, C., F. Yang, R. Gao, Z. Huang, B. Xu, Y. Dong, T. Hong, and X. Tang. 2010. Study of fecal bacterial diversity in Yunnan snub-nosed monkey (Rhinopithecus bieti) using phylogenetic analysis of cloned 16S rRNA gene sequences. Afr. J. Biotechnol. 9: 6278-6289.
29 Zhou, J., M. A. Bruns, and J. M. Tiedje. 1996. DNA recovery from soils of diverse composition. Appl. Environ. Microbiol. 62: 316-322.