• Title/Summary/Keyword: 16S rDNA-ARDRA

Search Result 20, Processing Time 0.027 seconds

Bacterial Diversity in the Mud Flat of Sunchon Bay, Chunnam Provice, by 16S rRNA Gene Analysis (16S rRNA 유전자 분석에 의한 전남 순천만 갯벌의 세균 다양성)

  • 이명숙;홍순규;이동훈;배경숙
    • Korean Journal of Microbiology
    • /
    • v.37 no.2
    • /
    • pp.137-144
    • /
    • 2001
  • In order to investigate the diversity of bacterial community in the mud flat of Sunchon Bay, Chunnam province, diversity of amplified 16S rDNA was examined. Total DNA was extracted from sediment soils and 16S rDNAs were amplified using PCR primers based on the universally conserved sequences in bacteria. Clonal libraries were constructed and 111 clones were examined by amplified rDNA restriction analysis (ARDRA) using HaeIII. Clones were clustered based on restriction patterns using computer program, GelCompar II. One hundred different RFLP types were detected from 111 clones. The 20 clones were selected and sequenced according to dendrograms derived from ARDRA, to cover most of the bacterial diversity in the clone libraries. None of the clones were identical to any representatives in the Ribosomal Database Project small subunit RNA databases and GenBank. All sequences showed between 77 and 96.8% similarity to the known 16s rRNA sequence from cultured organisms. The 20 clones sequenced fell into seven major lineages of the domain Bacteria: alpha-, delta-, gamma-Proteobacteria, low G+C Gram positive bacteria, high G+C Gram positive bacteria, Sphingobacteria (Cytophaga) and Cyanobacteria (chloroplast). Among the clones, the Proteobacteria were dominant.

  • PDF

The Genetic Diversity of Bacterial Communities in the Groundwater (지하수 세균 군집의 유전적 다양성)

  • 김여원;민병례;최영길
    • Korean Journal of Environmental Biology
    • /
    • v.18 no.1
    • /
    • pp.53-61
    • /
    • 2000
  • In order to characterize the genetic diversity of bacterial community in groundwater, samples were collected from used for drinking water and polluted with heavy metal wastewater in Seoul city and natural cave of Kangwondo. The DNA was amplified with 165 rDNA-based primers by use of the PCR, and then analysed ARDRA (amplified ribosomal DNA restriction analysis). Restriction endonuclease analysis patterns of amplified 165 rDNA in drinking water and wastewater relatively showed high genetic diversity in situ and drinking groundwater. The number of DNA fragments varied with in situ and drinking water. This method of ARDRA of bacterial communities in groundwater could be used for a quick assessment of genotypic changes between different locations reflecting different environmental conditions and the diversity reflected pollution of groundwater (natural cave water>drinking water>waste water, as in order of grade). [Genetic diversity, Groundwater, 165 rDNA, PCR, ARDRA].

  • PDF

Comparison of the Phylogenetic Diversity of Humus Forest Soil Bacterial Populations via Different Direct DNA Extyaction Methods (DNA 직접추출법에 따른 산림토양 부식층 내 세균군집의 계통학적 다양성 비교)

  • Son, Hee-Seong;Han, Song-Ih;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.210-216
    • /
    • 2007
  • The principal objective of this study was to analyze 16S rDNA-ARDRA of the humus forest soil via an improved manual method and an ISOIL kit on the basis of the UPGMA clustering of the 16S rDNA combined profile, 44 ARDRA clusters of 76 clones via the ISOIL kit method and 45 ARDRA clusters of 136 clones via the improved manual method. On the basis of the 16S rDNA sequences, 44 clones from the ARDRA clusters by the ISOIL kit were classified into 3 phyla : ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria and Actinobacteria. Using the improved manual method, the specimens were classified into 6 phyla : the ${\alpha}-,\;{\beta}-,\;{\gamma}-,\;{\delta}-Proteobacteria$, Acidobacteria, Bacteroides, Verrucomicrobia, Planctomycetes and Gemmatomonadetes. As a result, the modified manual method indicated greater phylogenetic diversity than was detected by the ISOIL kit. Approximately 40 percent of the total clones were identified as ${\alpha}-Proteobacteria$ and 30 percent of the total clones were ${\gamma}-Proteobacteria$ and assigned to dominant phylogenetic groups using the ISOIL kit. Using the modified manual method, 41 percent of the total clones were identified as Acidobacteria and 28 percent of total clones were identified as ${\alpha}-proteobacteria$ and assigned to dominant phylogenetic groups.

The Genetic Diversity Analysis of the Bacterial Community in Groundwater by Denaturing Gradient Gel Electrophoresis (DGGE)

  • Cho, Hong-Bum;Lee, Jong-Kwang;Choi, Yong-Keel
    • Journal of Microbiology
    • /
    • v.41 no.4
    • /
    • pp.327-334
    • /
    • 2003
  • This study employed two PCR-based 16S rDNA approaches, amplified rDNA restriction analysis (ARDRA) and denaturing gradient gel electrophoresis (DGGE), to characterize the bacterial community structure in groundwater. Samples were collected from groundwater for the use by private residences, as well as for industrial and agricultural purposes, in Ansan City. Each PCR product was obtained by PCR with eubacteria 16S rDNA and variable V3 region specific primer sets. After amplification, the 16S rDNA PCR products were digested with 4-base site specific restriction endonucleases, and the restriction pattern analyzed. The genetic diversity and similarity of the groundwater bacterial community was analyzed by eubacteria universal primer sets for the amplification of variable V3 regions of the bacterial 16S rDNA. The result of the bacterial community analysis, by ARDRA and DGGE, revealed the same pattern. The highest diversity was found in groundwater from site G1, which was used in residences. In the DGGE profile, a high intensity band was sequenced, and revealed to be Pseudomonas sp. strain P51.

Comparison of Phylogenetic Characteristics of Viable but Non-Culturable (VBNC) Bacterial Populations in the Pine and Quercus Forest Soil by 16S rDNA-ARDRA (16S rDNA-ARDRA법을 이용한 소나무림과 상수리나무림 토양 내 VBNC 세균군집의 계통학적 특성 비교)

  • Han Song-Ih;Kim Youn-Ji;Whang Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.116-124
    • /
    • 2006
  • In this study was performed to analyze quantitatively the number of viable but non-culturable bacteria in the Pine and Quercus forest soil by improved direct viable count (DVC) and plate count (PC) methods. The number of living bacteria of Pine and Quercus forest soil by PC method were less then 1% of DVC method. This result showed that viable but non-culturable (VBNC) bacteria existed in the forest soil with high percentage. Diversity and structure of VBNC bacterial populations in forest soil were analyzed by direct extracting of DNA and 16S rDNA-ARDRA from Pine and Quercus forest soil. Each of them obtained 111 clones and 108 clones from Pine and Quercus forest soil. Thirty different RFLP types were detected from Pine forest soil and twenty-six different RFLP types were detected from Quercus forest soil by HeaIII. From ARDRA groups, dominant clones were selected for determining their phylogenetic characteristics based on 16S rDNA sequence. Based on the 16S rDNA sequences, dominant clones from ARDRA groups of Pine forest soil were classified into 7 major phylogenetic groups ${\alpha}$-proteobacteria (12 clones), ${\gamma}$-proteobacteria (3 clones), ${\delta}$-proteobacteria (1 clone), Flexibacter/Cytophaga (1 clone), Actinobacteria (4 clones), Acidobacteria (4 clones), Planctomycetes (5 clones). Also, dominant clones from ARDRA groups of Quercus forest soil were classified into 6 major phylogenetic groups : ${\alpha}$-proteobacte,ia (4clones), ${\gamma}$-proteobacteria (2 clones), Actinobacteria (10 clones), Acidobacteria (8 clones), Planctomycetes (1 clone), and Verrucomicobia (1 clone). Result of phylogeneric analysis of microbial community from Pine and Quercus forest soils were mostly confirmed at uncultured or unidentified bacteria, VBNC bacteria of over 99% existent in forest soil were confirmed variable composition of unknown micro-organism.

Comparison of metabolic diversity by sole carbon source utilization and genetic diversity by restriction patterns of amplified 16S rDNA (ARDRA)in soil bacterial communities. (토양세균 군집의 대사 다양성과 16S rDNA의 제한효소 지문분석에 의한 유전적 다양성의 비교)

  • 송인근;최영길;김유영;조홍범
    • Korean Journal of Microbiology
    • /
    • v.35 no.1
    • /
    • pp.72-77
    • /
    • 1999
  • To investigate soil bacterial diversity according to vegelalioo types, utilizing ability of sole carbon sources and restriction enzyme patterns of 16s rDNA were analyzed. From the both results; five kinds of soil microbial communities were grouped as forest soil (Quercus mongolica and Pinus densi&ra vegetation), grass-agricultured soil and microbial communities of naked soil. But, both soil microbial communities of directily exlracted from ths soil and indirectly extracted from heterotrophic bacteria that cultured soil in LB medium showed very different similarity.

  • PDF

Bacterial diversity of the Marine Sponge, Halichondria panicea by ARDRA and DGGE (ARDRA와 DGGE를 이용한 Halichondria panicea 해면의 공생세균 다양성)

  • Park, Jin-Sook
    • Korean Journal of Microbiology
    • /
    • v.51 no.4
    • /
    • pp.398-406
    • /
    • 2015
  • Culture-dependent ARDRA and culture-independent DGGE were employed to investigate the bacterial community associated with the marine sponge Halichondria panicea collected from Jeju Island. A total of 120 bacterial strains associated with the sponge were cultivated using modified Zobell and Marine agar media. PCR amplicons of the 16S rRNA gene from the bacterial strains were digested with the restriction enzymes HaeIII and MspI, and then assigned into different groups according to their restriction patterns. The 16S rRNA gene sequences derived from ARDRA patterns showed more than 96% similarities compared with known bacterial species, and the isolates belonged to four classes, Alphaproteobacteria, Gammaproteobacteria, Bacteroidetes, and Firmicutes, of which Alphaproteobacteria was dominant. DGGE fingerprinting of 16S rRNA genes amplified from the sponge-derived total gDNA showed 14 DGGE bands, and their sequences showed 100% similarities compared with the sequences available in GenBank. The sequences derived from DGGE bands revealed high similarity with the uncultured bacterial clones. DGGE revealed that bacterial community consisted of seven classes, including Alphaproteobacteria, Gammaproteobacteria, Acidobacteria, Actinobacteira, Bacteroidetes, Cyanobacteria, and Chloroflexi. According to both the ARDRA and DGGE methods, three classes, Alphaproteobacteria, Gammaproteobacteria, and Bacteroidetes, were commonly found in H. panicea. However, overall bacterial community in the sponge differed depending on the analysis methods. Sponge showed more various bacterial community structures in culture independent method than in culture-dependent method.

Phylogenetic Characteristics of viable but Nonculturable Bacterial Populations in a Pine Mushroom (Tricholoma matsutake) Forest Soil (송이 자생군락 토양 내 난배양성 세균군집의 계통학적 특성)

  • Kim, Yun-Ji;Whang, Kyung-Sook
    • Korean Journal of Microbiology
    • /
    • v.43 no.3
    • /
    • pp.201-209
    • /
    • 2007
  • The CFDA (6-carboxyfluorescein diacetate) direct viable count method and plate count (PC) method using conventional nutrient broth (NB) medium and $10^{-2}$ diluted NB (DNB) medium were applied to samples collected from Mt. Yongdoo In Andong, in an effect to determine the number of living bacteria pine mushroom forest soil. The number of living bacteria determined via plate count in NB medium comprised $5{\sim}8%$ of the CFDA direct viable count, and the bacteria in the DNB medium comprised $40{\sim}47%$. This result indicated that viable but nonculturable (VBNC) bacteria existed in the pine mushroom forest soil at a high percentage. The phylogenetic characteristics of the VBNC bacterial populations in the samples of pine mushroom (Tricholoma matsutake) forest soil were analyzed via the direct extraction of DNA and 16S rDNA-ARDRA. The 115 clones from pine mushroom forest soil were clustered into 31 different RFLP phylotypes by ARDRA. Based on the 16S rDNA sequences, the 31 ARDRA clusters were classified into 6 phylogenetic groups: ${\alpha}-,\;{\beta}-,\;{\gamma}-Proteobacteria$, Acidobacteria, Actinobacteria and Firmicutes. Among these bacterial populations, approximately 85% were classified as members of phylum Acidobacteria. The Acidobacteria phylum was shown to exist abundantly in the pine mushroom forest soil.

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)

  • Rameshkumar, Neelamegam;Ayyadurai, Niraikulam;Kayalvizhi, Nagarajan;Gunasekaran, Paramsamy
    • Journal of Microbiology and Biotechnology
    • /
    • v.22 no.1
    • /
    • pp.13-24
    • /
    • 2012
  • The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.

Halotolerant Spore-Forming Gram-Positive Bacterial Diversity Associated with Blutaparon portulacoides (St. Hill.) Mears, a Pioneer Species in Brazilian Coastal Dunes

  • Barbosa Deyvison Clacino;Irene Von Der Weid;Vaisman Natalie;Seldin Lucy
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.2
    • /
    • pp.193-199
    • /
    • 2006
  • Halotolerant spore-forming Gram-positive bacteria were isolated from the root, rhizosphere, and non-rhizosphere soil of Blutaparon portulacoides. The different isolates were characterized genetically using an amplified ribosomal DNA restriction analysis (ARDRA), and phenotypically based on their colonial morphology, physiology, and nutritional requirements. Three different 16S rRNA gene-based genotypes were observed at a 100% similarity using the enzymes HinfI, MspI, and RsaI, and the phenotypic results also followed the ARDRA groupings. Selected strains, representing the different ARDRA groups, were analyzed by 16S rDNA sequencing, and members of the genera Halobaeillus, Virgibacillus, and Oceanobacillus were found. Two isolates showed low 16S rDNA sequence similarities with the closest related species of Halobacillus, indicating the presence of new species among the isolates. The majority of the strains isolated in this study seemed to belong to the species O. iheyensis and were compared using an AP-PCR to determine whether they had a clonal origin or not. Different patterns allowed the grouping of the strains according to Pearson's coefficient, and the resulting dendrogram revealed the formation of two main clusters, denoted as A and B. All the strains isolated from the soil were grouped into cluster A, whereas cluster B was exclusively composed of the strains associated with the B. portulacoides roots. This is the first report on the isolation and characterization of halotolerant spore-forming Gram-positive bacteria that coexist with B. portulacoides. As such, these new strains may be a potential source for the discovery of bioactive compounds with industrial value.