Browse > Article
http://dx.doi.org/10.4014/jmb.1107.07025

Genotypic and Phenotypic Diversity of PGPR Fluorescent Pseudomonads Isolated from the Rhizosphere of Sugarcane (Saccharum officinarum L.)  

Rameshkumar, Neelamegam (Department of Genetics, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Ayyadurai, Niraikulam (School of Biotechnology, Yeungnam University)
Kayalvizhi, Nagarajan (Department of Genetics, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Gunasekaran, Paramsamy (Department of Genetics, Center for Excellence in Genomic Sciences, School of Biological Sciences, Madurai Kamaraj University)
Publication Information
Journal of Microbiology and Biotechnology / v.22, no.1, 2012 , pp. 13-24 More about this Journal
Abstract
The genetic diversity of plant growth-promoting rhizobacterial (PGPR) fluorescent pseudomonads associated with the sugarcane (Saccharum officinarum L.) rhizosphere was analyzed. Selected isolates were screened for plant growthpromoting properties including production of indole acetic acid, phosphate solubilization, denitrification ability, and production of antifungal metabolites. Furthermore, 16S rDNA sequence analysis was performed to identify and differentiate these isolates. Based on 16S rDNA sequence similarity, the isolates were designated as Pseudomonas plecoglossicida, P. fluorescens, P. libaniensis, and P. aeruginosa. Differentiation of isolates belonging to the same group was achieved through different genomic DNA fingerprinting techniques, including randomly amplified polymorphic DNA (RAPD), amplified ribosomal DNA restriction analysis (ARDRA), repetitive extragenic palindromic (REP), enterobacterial repetitive intergenic consensus (ERIC), and bacterial repetitive BOX elements (BOX) analyses. The genetic diversity observed among the isolates and rep-PCR-generated fingerprinting patterns revealed that PGPR fluorescent pseudomonads are associated with the rhizosphere of sugarcane and that P. plecoglossicida is a dominant species. The knowledge obtained herein regarding the genetic and functional diversity of fluorescent pseudomonads associated with the sugarcane rhizosphere is useful for understanding their ecological role and potential utilization in sustainable agriculture.
Keywords
PGPR; fluorescent pseudomonads; repetitive sequences; RAPD; ARDRA; 16S rDNA sequence;
Citations & Related Records

Times Cited By Web Of Science : 0  (Related Records In Web of Science)
연도 인용수 순위
  • Reference
1 Swinburne, T. R. 1986. Iron, Siderophores, and Plant Diseases, 1st Ed. Plenum Press, New York.
2 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S Ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703.   DOI
3 Widmer, F., R. J. Seidler, P. M. Gillevet, L. S. Watrud, and G. D. Di Giovanni. 1998. A highly selective PCR protocol for detecting 16S rRNA genes of the genus Pseudomonas (sensu stricto) in environmental samples. Appl. Environ. Microbiol. 64: 2545-2553.
4 Alm, E. W., D. B. Oerther, N. Larsen, D. A. Stahl, and L. Raskin. 1996. The oligonucleotide probe database. Appl. Environ. Microbiol. 62: 3557-3559.
5 Ayyadurai, N., P. R. Naik, and N. Sakthivel. 2007. Functional characterization of antagonistic fluorescent pseudomonads associated with rhizospheric soil of rice (Oryza sativa L.). J. Microbiol. Biotechnol. 17: 919-927.
6 Gamaleroa, E., L. Fracchiaa, M. Cavalettoa, J. Garbayeb, P. Frey-Klettb, G. C. Varesec, and M. G. Martinotti. 2003. Characterization of functional traits of two fluorescent pseudomonads isolated from basidiomes of ectomycorrhizal fungi. Soil Biol. Biochem. 35: 55-65.   DOI
7 Berg, G., N. Roskot, A. Steidle, L. Eberl, A. Zock, and K. Smalla. 2002. Plant-dependent genotypic and phenotypic diversity of antagonistic rhizobacteria isolated from different verticillium host plants. Appl. Environ. Microbiol. 68: 3328-3338.   DOI
8 Bossis, E., P. Lemanceau, X. Latour, and L. Gardan. 2000. The taxonomy of Pseudomonas fluorescens and Pseudomonas putida: Current status and need for revision. Agronomie 20: 51-63.
9 Compant, S., B. Duffy, J. Nowak, C. Clement, and E. A. Barka. 2005. Use of plant growth-promoting bacteria for biocontrol of plant diseases: Principles, mechanisms of action, and future prospects. Appl. Environ. Microbiol. 71: 4951-4959.   DOI
10 Gurusiddaiah, S., D. M. Weller, A. Sarkar, and R. J. Cook. 1986. Characterization of an antibiotic produced by a strain of Pseudomonas fluorescens inhibitory to Gaeumannomyces graminis var. tritici and Pythium spp. Antimicrob. Agents Chemother. 29: 488-495.   DOI
11 Hu, H. B., Y. Q. Xu, F. Chen, X. H. Zhang, and B. K. Hur. 2005. Isolation and characterization of a new fluorescent Pseudomonas strain that produces both phenazine-1-carboxylic acid and pyoluteorin. J. Microbiol. Biotechnol. 15: 86-90.
12 Juliastuti, S. R., J. Baeyens, C. Creemers, D. Bixio, and E. Lodewyckx. 2003. The inhibitory effects of heavy metals and organic compounds on the net maximum specific growth rate of the autotrophic biomass in activated sludge. J. Hazard. Mater. 100: 271-283.   DOI
13 Lodewyckx, C., J. Vangronsveld, F. Porteous, E. R. B. Moore, S. Taghavi, M. Mezgeay, and D. van der Lelie. 2008. Endophytic bacteria and their potential applications. Crit. Rev. Plant Sci. 21: 538-606.
14 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
15 Kumar, S., K. Tamura, and M. Nei. 2004. Mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief. Bioinform. 5: 150-163.   DOI
16 Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16: 111-120.   DOI
17 Lodewyckx, L., C. Vandevyver, C. Vandervorst, W. Van Steenbergen, J. Raus, and L. Michiels. 2001. Mutation detection in the alpha-1 antitrypsin gene (PI) using denaturing gradient gel electrophoresis. Hum. Mutat. 18: 243-250.   DOI
18 Manzanares-Dauleux, M. J., I. Divaret, F. Baron, and G. Thomas. 2001. Assessment of biological and molecular variability between and within field isolates of Plasmodiophora brassicae. Plant Pathol. 50: 165-173.   DOI
19 Mehnaz, S. and G. Lazarovits. 2006. Inoculation effects of Pseudomonas putida, Gluconacetobacter azotocaptans, and Azospirillum lipoferum on corn plant growth under greenhouse conditions. Microb. Ecol. 51: 326-335.   DOI
20 Misko, A. L. and J. J. Germida. 2002. Taxonomic and functional diversity of pseudomonads isolated from the roots of fieldgrown canola. FEMS Microbiol. Ecol. 42: 399-407.   DOI
21 Naik, P. R., N. Sahoo, D. Goswami, N. Ayyadurai, and N. Sakthivel. 2008. Genetic and functional diversity among fluorescent pseudomonads isolated from the rhizosphere of banana. Microb. Ecol. 56: 492-504.   DOI
22 Palleroni, N. J. 1993. Pseudomonas classification. A new case history in the taxonomy of Gram-negative bacteria. Antonie van Leeuwenhoek 64: 231-251.
23 Nishimori, E., K. Kita-Tsukamoto, and H. Wakabayashi. 2000. Pseudomonas plecoglossicida sp. nov., the causative agent of bacterial haemorrhagic ascites of ayu, Plecoglossus altivelis. Int. J. Syst. Evol. Microbiol. 50: 83-89.   DOI
24 O'Sullivan, D. J. and F. O'Gara. 1992. Traits of fluorescent Pseudomonas spp. involved in suppression of plant root pathogens. Microbiol. Rev. 56: 662-676.
25 Osterhout, G. J., V. H. Shull, and J. D. Dick. 1991. Identification of clinical isolates of Gram-negative nonfermentative bacteria by an automated cellular fatty acid identification system. J. Clin. Microbiol. 29: 1822-1830.
26 Patten, C. L. and B. R. Glick. 1996. Bacterial biosynthesis of indole-3-acetic acid. Can. J. Microbiol. 42: 207-220.   DOI
27 Patten, C. L. and B. R. Glick. 2002. Role of Pseudomonas putida indole acetic acid in development of the host plant root system. Appl. Environ. Microbiol. 68: 3795-3801.   DOI
28 Picard, C., F. Di Cello, M. Ventura, R. Fani, and A. Guckert. 2000. Frequency and biodiversity of 2,4-diacetylphloroglucinolproducing bacteria isolated from the maize rhizosphere at different stages of plant growth. Appl. Environ. Microbiol. 66: 948-955.   DOI
29 Priest, F. G. and B. Austin. 1993. Modern Bacterial Taxonomy, 2nd Ed. Chapman & Hall, London.
30 Rademaker, J. L., B. Hoste, F. J. Louws, K. Kersters, J. Swings, L. Vauterin, P. Vauterin, and F. J. de Bruijn. 2000. Comparison of AFLP and rep-PCR genomic fingerprinting with DNA-DNA homology studies: Xanthomonas as a model system. Int. J. Syst. Evol. Microbiol. 50: 665-677.   DOI
31 Rosenblueth, M. and E. Martinez-Romero. 2006. Bacterial endophytes and their interactions with hosts. Mol. Plant Microbe Interact. 19: 827-837.   DOI
32 Ramesh Kumar, N., V. Thirumalai Arasu, and P. Gunasekaran. 2002. Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Curr. Sci. India 82: 1463-1466.
33 Rangarajan, S., L. M. Saleena, and S. Nair. 2002. Diversity of Pseudomonas spp. isolated from rice rhizosphere populations grown along a salinity gradient. Microb. Ecol. 43: 280-289.   DOI
34 Rao, S. 1997. Soil Microorganisms and Plant Growth. Oxford and IBH Publishing Co., New Delhi.
35 Ross, I. L., Y. Alami, P. R. Harvey, W. Achouak, and M. H. Ryder. 2000. Genetic diversity and biological control activity of novel species of closely related pseudomonads isolated from wheat field soils in South Australia. Appl. Environ. Microbiol. 66: 1609-1616.   DOI
36 Saitou, N. and M. Nei. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4: 406-425.
37 Sakthivel, N. and S. S. Gnanamanickam. 1987. Evaluation of Pseudomonas fluorescens for suppression of sheath rot disease and for enhancement of grain yields in rice (Oryza sativa L.). Appl. Environ. Microbiol. 53: 2056-2059.
38 Sakthivel, N. and S. S. Gnanamanickam. 1989. Incidence of different biovars of Pseudomonas fluorescens in flooded rice rhizospheres in India. Agric. Ecosyst. Environ. 25: 287-298.   DOI
39 Sands, D. C. and A. D. Rovira. 1971. Pseudomonas fluorescens biotype G, the dominant fluorescent pseudomonad in South Australian soils and wheat rhizospheres. J. Appl. Bacteriol. 34: 261-275.   DOI