• Title/Summary/Keyword: 16S

Search Result 27,351, Processing Time 0.05 seconds

Heterogeneity Analysis of the 16S rRNA Gene Sequences of the Genus Vibrio (Vibrio 속 16S rRNA 유전자 염기서열의 이질성 분석)

  • Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.430-434
    • /
    • 2009
  • Bacterial 16S rRNA gene sequences have been widely used for the studies on molecular phylogeny, evolutional history, and molecular detections. Bacterial genomes have multiple rRNA operons, of which gene sequences sometimes are variable. In the present study, heterogeneity of the Vibrio 16S rRNA gene sequences were investigated. Vibrio 16S rRNA sequences were obtained from GenBank databases, considering the completion of gene annotation of Vibrio genome sequences. These included V. cholerae, V. harveyi, V. parahaemolyticus, V. splendidus, and V. vulnificus. Chromosome 1 of the studied Vibrio had 7~10 copies of the 16S rRNA gene, and their intragenomic variations were less than 0.9% dissimilarity (more than 99.1% DNA similarity). Chromosome 2 had none or single 16S rRNA gene. Intragenomic 16S rRNA genotypes were detected at least 5 types (V. vulnificus #CMCP6) to 8 types (V. parahaemolyticus #RIMD 2210633, V. harveyi #ATCC BAA-1116). These suggest that Vibrio has high heterogeneity of the 16S rRNA gene sequences.

Use of 16S-23S rRNA Intergenic Spacer Region for identification in the fish pathogenic Streptococcus iniae (16S-23S rRNA Intergenic Spacer Region을 이용한 어류 병원성Streptococcus iniae의 분자생물학적 동정)

  • Jeong, Yong-Uk;Gang, Bong-Jo;Park, Geun-Tae;Heo, Mun-Su
    • Journal of fish pathology
    • /
    • v.17 no.2
    • /
    • pp.91-98
    • /
    • 2004
  • This study was performed for the identification of Streptococcus sp. from cultured flounders (Paralichthys olivaceus) showing streptococcosis in the Jeju island. We isolated 10 strains of Streptococcus iniae from the cultured olive flounders with streptococcosis. Isolated strains were identified in S. iniae since they have formed the expected band through performing PCR assay using specific primers, Sin-1 (5'-CTAGAGTACACATGTACT(AGCT)AAG-3') and Sin-2 (5'-GGATTTTCCACTCCCATTAC-3'). In addition to 16S-23S rRNA intergenic spacers (ISR), operon structure of isolated strains showed that all strains had three 16S-23S rRNA ISR band patterns. The 16S-23S rRNA ISR sequence of isolated strains showed 96% sequence identity with S. iniae (GenBank accession number AF 048773). This paper is the first report that S. iniae is associated with streptococcosis of Olive flounder in Korea.

Molecular Divergences of 16S rRNA and rpoB Gene in Marine Isolates of the Order Oscillatoriales (Cyanobacteria) (남조세균 흔들말목(Cyanobacteria, Oscillatoriales) 해양 균주의 16S rRNA와 rpoB 유전자 변이)

  • Cheon, Ju-Yong;Lee, Min-Ah;Ki, Jang-Seu
    • Korean Journal of Microbiology
    • /
    • v.48 no.4
    • /
    • pp.319-324
    • /
    • 2012
  • In this study, we investigated molecular divergences and phylogenetic characteristics of the 16S ribosomal RNA (rRNA) and RNA polymerase beta subunit (rpoB) gene sequences from the order Oscillatoriales (Cyanobacteria). The rpoB of Oscillatoriales showed higher genetic divergence when compared with those of 16S rRNA (p-distance: rpoB=0.270, 16S=0.109), and these differences were statistically significant (Student t-test, p<0.001). Phylogenetic trees of 16S rRNA and rpoB were generally compatible; however, rpoB tree clearly separated the compared Oscillatoriales taxa, with higher phylogenetic resolution. In addition, parsimony analyses showed that rpoB gene evolved 2.40-fold faster than 16S rRNA. These results suggest that the rpoB is a useful gene for the molecular phylogenetics and species discrimination in the order Oscillatoriales.

Nucleotide Sequence and Secondary Structure of 16S rRNA from Sphingomonas chungbukensis DJ77 (Sphingomonas chungbukensis DJ77의 16S rRNA 염기서열과 이차구조)

  • Lee Kwan-Young;Kwon Hae-Ryong;Lee Won-Ho;Kim Young-Chang
    • Korean Journal of Microbiology
    • /
    • v.41 no.2
    • /
    • pp.125-128
    • /
    • 2005
  • A 16S ribosomal RNA gene from S. chungbukensis DJ77 has been sequenced. This sequence had a length of 1,502 bp and was extended for 29 bp at 5' and for 37 bp at 3' from the partial sequence (1,435 bp) registered in 2000 year. Besides, 1 bp was newly added near to the 3' end. We made the secondary structure of the 16S rRNA based on E. coli model and found four specific regions. We found constant and variable regions in genus Sphingomonas as the result of multiple alignment of 16S rRNA gene sequences from Sphingomonas spp. and S. chungbukensis DJ77. We found a stem loop structure in S. chungbukensis DJ77, which was only discovered in C. jejuni to date. It showed the structural agreement despite the difference of the sequences from the both organisms. Finally, S. chungbukensis DJ77 belonged to cluster II (Sphingobium) group, after the classification using phylogenetic analysis and nucleotide signature analysis.

Identification and Comparison of the Nucleotide Sequence of 16S-23S rRNA Gene Intergenic Small SR(Spacer Region) of Lactobacillus rhamnosus ATCC 53103 with Those of L. casei, L. acidophilus and L. helveticus

  • Byun, J.R.;Yoon, Y.H.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.12
    • /
    • pp.1816-1821
    • /
    • 2003
  • Reliable PCR based identification of lactobacilli has been described utilizing the sequence of 16S-23S rRNA intergenic spacer region. Those sequence comparisons showed a high degree of difference in homology among the strains of L. rhamnosus, L. casei, L. acidophilus and L. helveticus whose 16S-23S rRNA intergenic small SR's sizes were 222 bp, 222 bp, 206 bp and 216 bp respectively. The sequence of 16S-23S rRNA intergenic spacer region of L. rhamnosus ATCC 53103 revealed the close relatedness to those of L. casei strains by the homology ranges from 95.4% to 97.2%. 16S-23S rRNA intergenic spacer region nucleotide sequence of L. acidophilus showed some distant relatedness with L. rhamnosus ATCC 53103 with the homology ranges from 40.3% to 41.8% and that with L. helveticus was shown to be 30% of homology, which exists at the most distant phylogenetic relatedness. The identification of species and strain of lactobacilli was possible on the basis of these results. The common sequences among the 17 strains were CTAAGGAA located in the initiating position of the DNA and some discrepancies were found between the same strains based on these results.

Identification of Tumor Suppressor Loci on the Short Arm of Chromosome 16 in Primary Small Cell Lung Cancers (원발성 소세포폐암에서 염색체 16번의 단완에 위치한 종양억제유전자좌의 확인)

  • Kee, Hyun Jung;Shin, Ju Hye;Chang, Joon;Chung, Kyung Young;Shin, Dong Hwan;Kim, Young Sam;Chang, Yoon Soo;Kim, Sung Kyu;Kwak, Seung Min;Kim, Se kyu
    • Tuberculosis and Respiratory Diseases
    • /
    • v.55 no.6
    • /
    • pp.597-611
    • /
    • 2003
  • Background : Loss of the short arm of chromosome 16 is a frequent event in various cancers, which suggests the presence of tumor suppressor gene(s) there. To map precise tumor suppressor loci on the chromosome arm for further positional cloning efforts, we tested 23 primary small cell lung cancers. Method : The DNAs extracted from paraffin embedded tissue blocks with primary tumor and corresponding control tissue were investigated. Twenty polymorphic microsatellite markers located in the short arm of chromosome 16 were used in the microsatellite analysis. Results : We found that six (26.1%) of 23 tumors exhibited LOH in at least one of tested microsatellite markers. Two (8.7%) of 6 tumors exhibiting LOH lost a larger area in chromosome 16p. LOH was observed in five common deleted regions at 16p. Among those areas, LOH between D16S668 and D16S749 was most frequent (21.1%). LOH was also observed at four other regions, between D16S3024 and D16S748, D16S405, D16S420, and D16S753. Six of 23 tumors exhibited shifted bands in at least one of the tested microsatellite markers. Shifted bands occurred in 3.3% (15 of 460) of the loci tested. Conclusion : Our data demonstrated that at least five tumor suppressor loci might exist in the short arm of chromosome 16 and that they may play an important role in small cell lung cancer tumorigenesis.

Molecular Identification of Anginosus Group Streptococci Isolated from Korean Oral Cavities

  • Park, Soon-Nang;Choi, Mi-Hwa;Kook, Joong-Ki
    • International Journal of Oral Biology
    • /
    • v.38 no.1
    • /
    • pp.21-27
    • /
    • 2013
  • Anginosus group streptococci (AGS) were classified based on the nucleotide sequences of the 16S rRNA gene (16S rDNA) and comprised Streptococcus anginosus, Streptococcus intermedius, and Streptococcus constellatus. It is known that AGS is a causative factor of oral and systematic diseases. The purpose of this study was to discriminate the 56 clinical strains of AGS isolated from Korean oral cavities using phylogenetic analysis of 16S rDNA and species-specific PCR at the species-level. The 16S rDNA of clinical strains of AGS was sequenced using the dideoxy chain termination method and analyzed using MEGA version 5 software. PCR was performed to identify the clinical strains using species-specific primers described in previous studies and S. intermedius-specific PCR primers developed in our laboratory. The resulting phylogenetic data showed that the 16S rDNA sequences can delineate the S. anginosus, S. intermedius, and S. constellatus strains even though the 16S rDNA sequence similarity between S. intermedius and S. constellatus is above 98%. The PCR data showed that each species-specific PCR primer pair could discriminate between clinical strains at the species-level through phylogenetic analysis of 16S rDNA nucleotide sequences. These results suggest that phylogenetic analysis of 16S rDNA and PCR are useful tools for discriminating between AGS strains at the species-level.

Genetic Similarity Between Jujube Witches¡?Broom and Mulberry Dwarf Phytoplasmas Transmitted by Hishimonus sellatus Uhler

  • Cha, Byeongjin;Han, Sangsub
    • The Plant Pathology Journal
    • /
    • v.18 no.2
    • /
    • pp.98-101
    • /
    • 2002
  • Using phytoplasma universal primer pair Pl and P7, a fragment of about 1.8 kb nucleotide sequences of 16S rRNA gene and 16S-23S rRNA intergenic spacer region, and a portion of 23S rRNA gene of jujube witches'broom (JWB) and mulberry dwarf(MD) phytoplasmas were determined. The nucleotide sequences of JWB and MD were 1,850 bp and 1,831 bp long, respectively. The JWB phytoplasma sequence was aligned with the homologous sequence of MD phytoplasma. Twenty-eight base insertions and nine base deletions were found in the JWB phytoplasma sequence compared with that of MD phytoplasma. The similarity of the aligned sequences of JWB and MD was 84.8%. The near-complete 16S rRNA gene DNA sequences of JWB and MD were 1,529 bp and 1,530 bp in length, respectively, and revealed 89.0% homology. The 16S-23S rRNA intergenic spacer region DNA sequences were 263 bp and 243 bp in lengths respectively, while homology was only 70% and the conserved tRNA-lle gene of JWB and MD was located into the intergenic space region between 16S-23S rRNA gene. The nucleotide sequences were 77 bp long in both JWB and MD, and showed 97.4% sequence homology. Based on the phylogenetic analysis of the two phytoplasmas, the JWB phytoplasma belongs to the Elm yellow phytoplasma group (16S rV), whereas, the MD phytoplasma belongs to the Aster yellow group (16S rI).

Phylogenetic analysis of procaryote by uridylate kinase (Uridylate kinase를 이용한 원핵생물의 분류)

  • 이동근;김철민;김상진;하배진;하종명;이상현;이재화
    • Journal of Life Science
    • /
    • v.13 no.6
    • /
    • pp.856-864
    • /
    • 2003
  • The 16S rRNA gene is the most common gene in the phylogenetic analysis of procaryotes. However very high conservative of 16S rRNA has limitation in the discrimination of highly related organisms, hence other molecule was applied in this study and the result was compared with that of 16S rRNA. Three COGs (Clusters of Orthologous of protein) were only detected in 42 procaryotes ; transcription elongation facto. (COG0195), bacterial DNA primase (COG0358) and uridylate kinase (COG0528). Uridylate kinase gene was selected because of the similarity and one single copy number in each genome. Bacteria, belong to same genus, and Archaebacteria were same position with high bootstrap value in phylogenetic tree like the tree of 16S rRNA. However, alpha and epsilon Proteobcteria showed different position and Spirochaetales of Eubarteria was grouped together with Archaebacteria unlike the result of 16S rRNA. Uridylate kinase may compensate the problem of very high conservative of 16S rRNA gene and it would help to access more accurate discrimination and phylogenetic analysis of bacteria.

Detection and Molecular Characterization of a Stolbur Phytoplasma in Lilium Oriental Hybrids

  • Chung, Bong-Nam;Jeong, Myeong-Il
    • The Plant Pathology Journal
    • /
    • v.19 no.2
    • /
    • pp.106-110
    • /
    • 2003
  • Stolbur Phytoplasma was detected from Lilium Oriental hybrids showing flattened stem and flower clustering. The presence of phytoplasma was demonstrated using polymerase chain reaction(PCR) assays with phyto-plasma-universal(P1/P6)and stolbur phytoplasma-specific 16F1/R1-S primer pairs amplifying phytoplasma 16S rDNA regions. Nucleotide suquences of the phytoplasma 16S rDNA were determined. Nucleic acid extracted from lily amplified 1.5 kb DNA with a phytoplasma universal primer pair. In nested PCR, 1.1 kb PCR product was obtained using specific primer pair, indicating an isolate of stolbur phytoplasma. Nucleotide sequence of phytoplasma 16S rDNA reported in this study showed 99.5% and 99.1% identities with two known stolbur phytoplamas (16Sr XII-A). Also, it exhibited a sequence homology of 98.0% with phormium yellow leaf (16Sr XII-B), and 97.9% with Australian grapevine yellows (16Sr XII-B). Meanwhile, it showed 98.1% identity with strawberry green petal phytoplama, (16Sr1-C), and 94.7 % with American aster yellows (16Sr1-B). Homology percentage of the 16S rDNA nucleotide sequence suggests that this phytoplama could be classified into the stolbur phytoplasma, subgroup A (16Sr XII-A), as a type strain stolbur.