• Title/Summary/Keyword: 13Cr stainless steel

Search Result 25, Processing Time 0.022 seconds

High Temperature Creep-Fatigue Behavior of 25Cr-13Ni Stainless Steel (25Cr-13Ni 스테인리스강의 고온 크리프-피로거동에 관한 연구)

  • Song, Jeon-Young;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.28 no.2
    • /
    • pp.68-74
    • /
    • 2015
  • The low cycle fatigue (LCF) and creep-fatigue (hold time tension fatigue, HTTF) tests were performed on the modified 25Cr-13Ni cast stainless steel, which was selected as a candidate material for exhaust manifold in automotive engine. The exhaust manifold is subjected to an environment in which heating and cooling cycle occur due to the running pattern of automotive engine. Several types of fatigue behaviour such as thermal fatigue, thermal mechanical fatigue and creep-fatigue are belong to the main failure mechanisms. High temperature tensile test was firstly carried out to compare the sample with the traditional cast steel for the component. The low cycle fatigue and HTTF tests were carried out under the strain controlled condition with the total strain amplitude from ${\pm}0.6%$ to ${\pm}0.7%$ at $800^{\circ}C$. The hysteresis loops of HTTF tests showed significant stress relaxation during tension hold time. With the increase of tension hold time, the fatigue life was remarkably deceased which caused from the formation of intercrystalline crack by the creep failure mechanism.

Effects of Alloying Elements on Hardening of 13Cr Stainless Steels Using Plasma Nitriding Process (플라즈마질화처리에 의한 13Cr 스테인리스강의 표면경화특성에 미치는 질화물형성원소첨가의 영향)

  • ;;;;中田一博
    • Journal of Welding and Joining
    • /
    • v.16 no.1
    • /
    • pp.88-97
    • /
    • 1998
  • The surface characteristics of 13Cr stainless steel systems by plasma nitriding were investigated. The plasma nitriding for the 13Cr steels, in which the nitriding forming elements such as Ti, V, W, Nb, Al, Zr and Si were added about 2~3wt.%, respectively, was performed. In all nitrided specimens, .epsilon.-F $e_{2-3}$N, UPSILON.'-F $e_{4}$N and CrN were detected as the nitrides with the a-Fe in the nitrided layer. VN and .betha.- $W_{2}$N were also detected in 13Cr-3V and 13Cr-3W alloys. The growth of the nitrided layer was controlled by the diffusion process. The thickness of the nitrided layer was similar in the 13Cr-2Nb and 3Zr specimens to that of 13Cr(BM) specimen, while the others exhibited the thinner layer. The activation energy for the growth of the nitrided layer in the temperature range of 773-873K was about 130kJ/mol in 13Cr(BM), 13Cr-2Ti, 3W, 3Al, 3Zr and 3Si alloys. The hardness of the nitrided specimens was significantly increased above Hv1000, comparing to the non-nitrided specimen. The specimens with the nitrided forming elements revealed much higher hardness values and, especially, 13Cr-3Al, 3V and 3Si specimens were significantly hardened up to Hv1300.v1300.0.

  • PDF

Influence of Annealing Temperature on Microstructure and Pitting Corrosion Behavior of the 27Cr-7Ni Hyper Duplex Stainless Steel

  • Jeon, Soon-Hyeok;Kim, Hye-Jin;Kong, Kyeong-Ho;Park, Yong-Soo
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.48-55
    • /
    • 2014
  • Influence of annealing temperature on the microstructure and resistance to pitting corrosion of the hyper duplex stainless steel was investigated in acid and neutral chloride environments. The pitting corrosion resistance is strongly dependent on the microstructure, especially the presence of chromium nitrides ($Cr_2N$), elemental partitioning behavior and volume fraction of ferrite phase and austenite phase. Precipitation of deleterious chromium nitrides reduces the resistance to pitting corrosion due to the formation of Cr-depleted zone. The difference of PREN (Pitting Resistance Equivalent Number) values between the ferrite and austenite phases was the smallest when solution heat-treated at $1060^{\circ}C$. Based on the results of electrochemical tests and critical crevice temperature tests, the optimal annealing temperature is determined as $1060^{\circ}C$.

Welder's Exposure to Airborne Hexavalent Chromium and Nickel during Arc Welding in a Shipyard (모 조선업체 아크 용접 작업자의 공기중 6가 크롬 및 니켈 노출에 관한 연구)

  • Shin, Yong Chul;Yi, Gwang Yong;Lee, Na Roo;Oh, Se Min;Kang, Seong Kyu;Moon, Young Hahn;Lee, Ki Ra
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.8 no.2
    • /
    • pp.209-223
    • /
    • 1998
  • The aim of this study was to evaluate welders' exposure to hexavalent chromium (Cr(VI)) and nickel (Ni) during welding operations in a Korean shipyard. The airborne Cr(VI) and Ni concentrations were measured during metal inert gas (MIG) welding on mild and stainless steel, and manual metal arc (MMA) welding on mild steel. The geometric mean (GM) of Cr(VI) concentrations inside the welding helmet during MIG welding on mild steel were $0.0018mg/m^3$ inside a ship section, and $0.0015-0.0026mg/m^3$ at the welding shops. All of the personal breathing zone air samples were below the American Conference of Governmental Industrial Hygienists (ACGIH) Threshold Limit Value ($TLV^{(R)}$) of $0.01mg/m^3$. Conversely, eighty-eight percent(21 of 24) of the personal breathing zone air samples exceeded the National Institute for Occupational Safety and Health (NIOSH) recommended exposure limit of $0.001mg/m^3$. Ni was not detected on 20 of 23 air samples collected during MIG welding on mild steel. The three Ni samples above the limit of detection ranged from 0.015 to $0.044mg/m^3$. The GM of Cr(VI) concentrations during MMA welding on mild steel were $0.0013mg/m^3$, but Ni was not detected in the air samples during this operation. It is assumed that the airborne Cr(VI) and Ni during mild steel welding were derived from the base metals which contained about 0.03% Cr and 0.03% Ni. The GM of airborne total Cr, Cr(VI) and Ni concentrations during MIG welding on stainless steel were 4.02, 0.13 and $0.86mg/m^3$, respectively, and the levels of Cr(VI) and Ni were above the ACGIH-$TLV^{(R)}$. Cr(VI) comprised about 35.5% of the total chromium(Cr) from MIG welding on mild steel, and about 8.4% of total Cr from MIG welding on stainless steel. The ratios of Cr(VI) to total Cr were significantly different among welding shops. It was concluded that welders were exposed to high levels of Cr(VI) and Ni during welding on stainless steel, and were exposed to low levels of Cr(VI) even during welding on mild steel.

  • PDF

Influence of Mo addition on the Mechanical Properties of 13Cr Martensitic Stainless Steel (13Cr마르텐사이트계 스테인리스강의 기계적성질에 미치는 Mo첨가의 영향)

  • Kim, Ki-Yeob;Jung, Byong-Ho;Kim, Mu-Gil;Park, Chan;Ahn, Yong-Sik
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.11 no.3
    • /
    • pp.207-215
    • /
    • 1998
  • 13%Cr martensitic stainless steel was microalloyed with 0~1.5%Mo, and the mechanical properties were tested at the various heat treated conditions. Mo addition increased austenitization temperature(Ac1), and had little influence on the hardness and tensile properties at the annealed condition. The higher the austenitizing temperature, the higher the hardness and tensile strength, but Mo addition decreased those properties. The impact energy after austenitization increased with addition of Mo. The decrease of mechanical properties and increase of impact energy of Mo-alloyed steel after austenitization are thought to be caused by formation of ductile ${\delta}$-ferrite phase in the microstructure.

  • PDF

Effect of Sn and P on the shear strength of copper to stainless steel brazed joint (강과 스테인레스강 brazing 부의 전단 강도에 미치는 Sn, P의 영향 연구)

  • 정재필;이보영;강춘식
    • Journal of Welding and Joining
    • /
    • v.7 no.3
    • /
    • pp.36-43
    • /
    • 1989
  • The furnace brazing in a Ar of copper to martensitic stainless steel(13.5Cr) using Cu-(5~8%)P-(0~8%)Sn powders was investigated. Shear strength, wettability, reacted layer, defect ratio at the stainless steel interface was evaluated. As Sn was added to the Cu-P powders, defect ratio and P content at the stainless steel interface decreased. And also as Sn was added, defect form at the stainless steel interface changed from the continuous layer to the discrete type, and shear strength of the brazed joint increased.

  • PDF

Sintering Characteristics of 304 and 316L Stainless Steel Fine Powder (304 및 316L 스테인레스강 미립 분말의 소결 특성)

  • Lim, Tae-Whan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.6
    • /
    • pp.1555-1559
    • /
    • 2008
  • The characteristics of 304 (Fe-18%Cr-12%Ni) and 316L (Fe-18%Cr-13%Ni-2.4%Mo) austenite stainless-steel compacts sintered with $5{\sim}15{\mu}m$ powder were investigated and the results led to the following conclusions: (1) When the sintering time was 3.6ks, the relative density of sintered compacts was $95{\sim}98%$, regardless of any other sintering condition. (2) When a vacuum sintering was done with $5{\mu}m$ stainless steel powders, almost fully-dense sintered compacts were obtained at is = 57.6ks. (3) The amount of residual oxygen in 304 and 316L sintered compacts was $0.5{\sim}0.6%$, regardless of sintering atmosphere. (4) The amount of residual oxygen in the vacuum sintered compact decreased more than 0.3 % due to addition of carbon powder, thereby reducing the formation of oxides. Furthermore, the addition of carbon improved the density of sintered compact, which enables us to make a fully-dense high performance sintered compact.

Corrosion Behaviors of Structural Materialsin High Temperature S-CO2 Environments

  • Lee, Ho Jung;Kim, Hyunmyung;Jang, Changheui
    • Corrosion Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.41-47
    • /
    • 2014
  • The isothermal corrosion tests of several types of stainless steels, Ni-based alloys, and ferritic-martensitic steels (FMS) were carried out at the temperature of 550 and $650^{\circ}C$ in SFR S-$CO_2$ environment (200 bar) for 1000 h. The weight gain was greater in the order of FMSs, stainless steels, and Ni-based alloys. For the FMSs (Fe-based with low Cr content), a thick outer Fe oxide, a middle (Fe,Cr)-rich oxide, and an inner (Cr,Fe)-rich oxide were formed. They showed significant weight gains at both 550 and $650^{\circ}C$. In the case of austenitic stainless steels (Fe-based) such as SS 316H and 316LN (18 wt.% Cr), the corrosion resistance was dependent on test temperatures except SS 310S (25 wt.% Cr). After corrosion test at $650^{\circ}C$, a large increase in weight gain was observed with the formation of outer thick Fe oxide and inner (Cr,Fe)-rich oxide. However, at $550^{\circ}C$, a thin Cr-rich oxide was mainly developed along with partially distributed small and nodular shaped Fe oxides. Meanwhile, for the Ni-based alloys (16-28 wt.% Cr), a very thin Cr-rich oxide was developed at both test temperatures. The superior corrosion resistance of high Cr or Ni-based alloys in the high temperature S-$CO_2$ environment was attributed to the formation of thin Cr-rich oxide on the surface of the materials.

Technology Trends in Stainless Steel for Water Splitting Application (스테인레스 강의 수전해 전극 응용기술 동향)

  • Kim, Moonsu;Ha, Jaeyun;Kim, Yong-Tae;Choi, Jinsub
    • Journal of the Korean Electrochemical Society
    • /
    • v.24 no.2
    • /
    • pp.13-27
    • /
    • 2021
  • Stainless steel, which includes Ni and Cr with Fe balance, is most often applied for a wide range of applications such as structure and equipment material. It is not only suitable for use in these applications due to its good corrosion resistance, but also can be applied to catalyst, supporting material, and current collector due to intrinsic properties of Ni and Fe contained in stainless steel. Therefore, in recent years, a lots of surface treatment methods have been studied to activate stainless steel, developing application of water splitting system. In this review paper, the research on the surface treatment technology of stainless steel for water splitting is summarized. It is expected to be able to propose the diverse surface treatment approaches of stainless steel for application to low-cost and highly efficient water splitting electrode.

The Effects of the Structural Changes and Mechanical Properties of the Austenitized and Tempered Martensitic STS 410 Stainless Steel on Its Temper Embrittlement (STS 410 마르텐사이트계 Stainless 강의 템퍼취성과 조직 및 기계적 성질에 관한 연구)

  • S.H., Lee;T.H., Go;W.S., Lee;S.D., Kim
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.35 no.6
    • /
    • pp.303-313
    • /
    • 2022
  • The purpose of this study was to test and analyze the effects of the mechanical properties and structural changes of the austenitized and tempered martensite STS 410 stainless steel containing 11.5~13%Cr and 0.10%C on its temper embrittlement. The STS 410 stainless steel test pieces for each 3 hours at 960℃, 1000℃ and then, tempered them for 2 hours at 300℃, 350℃, 400℃, 450℃, 500℃, 550℃, 600℃, 650℃ and 700℃ known as the intervals vulnerable to temper embrittlement to observe the changes of their structures and mechanical properties. In case autenitizing was insufficient due to lower temperature of thermal treatment for solution, unsolved carbides and ferrites remained in the structure after quenching, which meant that the parts could wear out and corrode to embrittle at the room temperature. Elongation and impact energy changes with Tempering conditions showed minimum results in range of 400~500℃. The decrease in elongation and impact energy at 400~500℃ was the hardening effect of the subgrain due to the precipitation of many M3C or M7C3, M23C6. And STS 410 stainless steel corrosion tested in 10% NaCl solution at 30℃ after tempering treatment. The degree of corrosion sensitization showed increasing tendency with increase of tempering temperature and Cr carbide precipitation were observed in grain boundary.