• Title/Summary/Keyword: 1.8GHz Band

Search Result 608, Processing Time 0.029 seconds

Design of Ultra Wide-Band CMOS Low Noise Amplifier (광대역 CMOS 저잡음 증폭기 설계)

  • Moon Jeong-Ho;Jeong Moo-Il;Kim Yu-Sin;Lee Kwang-Du;Park Sang-Gyu;Han Sang-Min;Kim Young-Hwan;Lee Chang-Seok
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.17 no.6 s.109
    • /
    • pp.597-604
    • /
    • 2006
  • An ultrawideband(UWB) $3.1{\sim}5.15$ GHz low-noise amplifier employing a novel input matching circuit and feedback topology are presented. The proposed UWB amplifier is Implemented in $0.18{\mu}m$ RF CMOS technology. Measurements show a NF of $3.4{\sim}3.9$ dB, a power gain of $12.8{\sim}14$ dB, better than -9.4 of input matching and, an input IP3 of -1 dBm, while comsuming only 14.5 mW of power.

An Analysis and Design of Wideband Microstrip Rotman Lens by Contour Integral and Segmentation Method (경계적분법과 세그멘테이션 기법에 의한 광대역 마이크로스트립 로트만 렌즈의 해석 및 설계)

  • 이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.14 no.7
    • /
    • pp.769-776
    • /
    • 2003
  • This paper presents analysis and design of microstrip Rotman lens operating over wide band and wide steering angle by the contour integral method along with the segmentation method. All mutual coupling, internal reflections between ports and the discontinuity at every junction are taken into account. Equally spaced ports are designed and realized, which make suppress output ripple through the array ports. Impedance matching and mutual coupling between ports are analyzed and optimized using 12 input and 12 output exponential tapers. The measured results of fabricated lens show ${\pm}$ 1.8 dB insertion loss deviation over 6∼18 GHz wide frequency range and beam steering accuracy less than 1$^{\circ}$over ${\pm}$53$^{\circ}$angle and agrees well with the analysis results.

Design of a High Performance Patch Antenna for GPS Communication Systems

  • Hamedi-Hagh, Sotoudeh;Chung, Joseph;Oh, Soo-Seok;Jo, Ju-Ung;Park, Noh-Joon;Park, Dae-Hee
    • Journal of Electrical Engineering and Technology
    • /
    • v.4 no.2
    • /
    • pp.282-286
    • /
    • 2009
  • This paper presents the design of a patch antenna for GPS portable devices. The antenna is designed to operate at Ll band on an FR4 PCB with a thickness of 1.6mm, a dielectric constant of 3.8 and two metallization layers. The antenna has a dimension of 49mm${\times}$36mm and operates at 1.5754GHz with a return loss of -36dB and a measured bandwidth of 250MHz.

Analysis and Design of Wideband Rotman Lens with Exponential Taper Using Contour Integral and Segmentation Method (경계적분법과 세그멘테이션 기법을 이용한 광대역 지수함수 테이퍼 로트만렌즈의 해석 및 설계)

  • 이광일;이일규;오승엽
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.629-632
    • /
    • 2003
  • This paper has been studied analysis and design of microstrip Rotman lens operating over wide band and wide steering angle by the contour integral method along with the segmentation method. All mutual coupling, internal reflections between ports with exponential taper are taken into account. Equally spaced ports are designed and realized which gives less amplitude ripple at array ports. The measured results of 12 input and 12 output lens show $\pm$1.8 dB insertion loss deviation over 6~18GHz wide frequency range and beam steering accuracy less than 1$^{\circ}$ over $\pm$53$^{\circ}$ angle and agrees well with the analysis results.

  • PDF

A Frequency Synthesizer using Low Voltage Active Inductor VCO (저전압 능동 인덕터 VCO를 이용한 주파수 합성기)

  • Yi, Soon-Jai;Lee, Dong-Keon;Jeong, Hang-Geun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.471-475
    • /
    • 2010
  • This paper presents a frequency synthesizer using low voltage active inductor VCO(Voltage Controlled Oscillator). The low voltage active inductor VCO with feedback resistor increases its equivalent inductance and the quality-factor(Q). Under certain conditions, the low voltage active inductor with feedback resistor generates a negative resistance at the input. In this paper, the conditions for negative resistance are obtained by small signal analysis. The designed low voltage active inductor VCO covers a frequency band between 1059MHz and 1223MHz. The measured phase noise at 1.178GHz is -81.8dBc/Hz at 1MHz offset.

Design of Multiband Octa-Phase LC VCO for SDR (SDR을 위한 다중밴드 Octa-Phase LC 전압제어 발진기 설계)

  • Lee, Sang-Ho;Han, Byung-Ki;Lee, Jae-Hyuk;Kim, Hyeong-Dong
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.7 s.361
    • /
    • pp.7-11
    • /
    • 2007
  • This paper presents a multiband octa-phase LC VCO for SDR receiver. Four identical LC VCOs are connected by using series coupling transistor to obtain the octa-phase signal and low phase noise characteristic. For a multiband application, a band tuning circuit that consists of a switch capacitor circuit and two MOS varactors is proposed. As the MOS switch is on/off state, the frequency range will be varied. In addition, two varactors make the VCO be immune to process variation of the oscillation frequency. The VCO is designed in 0.18-um CMOS technology, consumes 12mA current from 1.8V supply voltage and operates with a frequency band from 885MHz to 1.342GHz (41% tuning range). As driving sub-harmonic mixer, the proposed VCO covers 3 standards(CDMA 2000 1x, WCDMA, WiBro). The measured phase noise is -105dBc@100kHz, -115dBc@1MHz, -130dBc@10MHz for CDMA 2000 1x, WCDMA, WiBro respectively.

Design of X-band 40 W Pulse-Driven GaN HEMT Power Amplifier Using Load-Pull Measurement with Pre-matched Fixture (사전-정합 로드-풀 측정을 통한 X-대역 40 W급 펄스 구동 GaN HEMT 전력증폭기 설계)

  • Jeong, Hae-Chang;Oh, Hyun-Seok;Yeom, Kyung-Whan;Jin, Hyeong-Seok;Park, Jong-Sul;Jang, Ho-Ki;Kim, Bo-Kyun
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.22 no.11
    • /
    • pp.1034-1046
    • /
    • 2011
  • In this paper, a design and fabrication of 40 W power amplifier for the X-band using load-pull measurement of GaN HEMT chip are presented. The adopted active device for power amplifier is GaN HEMT chip of TriQuint company, which is recently released. Pre-matched fixtures are designed in test jig, because the impedance range of load-pull tuner is limited at measuring frequency. Essentially required 2-port S-parameters of the fixtures for extraction optimal input and output impedances is obtained by the presented newly method. The method is verified in comparison of the extracted optimal impedances with data sheet. The impedance matching circuit for power amplifier is designed based on EM co-simulation using the optimal impedances. The fabricated power amplifier with 15${\times}$17.8 $mm^2$ shows the efficiency above 35 %, the power gain of 8.7~8.3 dB and the output power of 46.7~46.3 dBm at 9~9.5 GHz with pulsed-driving width of 10 usec and duty of 10 %.

An Electrical Properties Analysis of CMOS IC by Narrow-Band High-Power Electromagnetic Wave (협대역 고출력 전자기파에 의한 CMOS IC의 전기적 특성 분석)

  • Park, Jin-Wook;Huh, Chang-Su;Seo, Chang-Su;Lee, Sung-Woo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.30 no.9
    • /
    • pp.535-540
    • /
    • 2017
  • The changes in the electrical characteristics of CMOS ICs due to coupling with a narrow-band electromagnetic wave were analyzed in this study. A magnetron (3 kW, 2.45 GHz) was used as the narrow-band electromagnetic source. The DUT was a CMOS logic IC and the gate output was in the ON state. The malfunction of the ICs was confirmed by monitoring the variation of the gate output voltage. It was observed that malfunction (self-reset) and destruction of the ICs occurred as the electric field increased. To confirm the variation of electrical characteristics of the ICs due to the narrow-band electromagnetic wave, the pin-to-pin resistances (Vcc-GND, Vcc-Input1, Input1-GND) and input capacitance of the ICs were measured. The pin-to-pin resistances and input capacitance of the ICs before exposure to the narrow-band electromagnetic waves were $8.57M{\Omega}$ (Vcc-GND), $14.14M{\Omega}$ (Vcc-Input1), $18.24M{\Omega}$ (Input1-GND), and 5 pF (input capacitance). The ICs exposed to narrow-band electromagnetic waves showed mostly similar values, but some error values were observed, such as $2.5{\Omega}$, $50M{\Omega}$, or 71 pF. This is attributed to the breakdown of the pn junction when latch-up in CMOS occurred. In order to confirm surface damage of the ICs, the epoxy molding compound was removed and then studied with an optical microscope. In general, there was severe deterioration in the PCB trace. It is considered that the current density of the trace increased due to the electromagnetic wave, resulting in the deterioration of the trace. The results of this study can be applied as basic data for the analysis of the effect of narrow-band high-power electromagnetic waves on ICs.

A Study on Characteristics of the Transmission Line Employing Periodically Perforated Ground Metal on GaAs MMIC and Its Application to Highly Miniaturized On-chip Impedance Transformer Employing Coplanar Waveguide (GaAs MMIC상에서 주기적으로 천공된 홀을 가지는 접지 금속막 구조를 이용한 전송선로 특성연구 및 코프레너 선로를 이용한 온칩 초소형 임피던스 변환기에의 응용)

  • Yun, Young
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.8
    • /
    • pp.1248-1256
    • /
    • 2008
  • In this paper, basic characteristics of transmission line employing PPGM (periodically perforated ground metal) were investigated using theoretical and experimental analysis.According to the results, unlike the conventional PBG (photonic band gap) structures, the characteristic impedance of the transmission line employing PPGM structure showed a real value, which exhibited a very small dependency on frequency. The transmission line employing PPGM structure showed a loss (per quarter wave length) higher by $0.1{\sim}0.2\;dB$ than the conventional microstrip line. According to the investigation of the dependency of RF characteristic on ground condition, the RF characteristic of the transmission line employing PPGM structure was hardly affected by the ground condition in the frequency lower than Ku band, but fairly affected in the frequency higher than Ku band, which indicated that coplanar waveguide employing PPGM structure was optimal for RF characteristic and reduction of size. Considering above results, impedance transformer was developed using coplanar waveguide with PPGM structure for the first time, and good RF characteristics were observed from the impedance transformer. In case that {\lambda}/4$ impedance transformer with a center frequency of 9 GHz was fabricated for a impedance transformation from 20 to10 {\Omega}$, the line width and length were 20 and $500\;{\mu}m$, respectively, and its size was only 0.64 % of the impedance transformer fabricated with conventional microstrip lines. Above results indicate that the transmission line employing PPGM is a promising candidate for a development of matching and passive elements on MMIC.

Design and Performance Evaluation of MIMO Antenna for Handheld Devices (휴대 단말형 MIMO 안테나 설계 및 성능 평가)

  • Moon, Hyo-Sang;Jun, Kye-Suk;Lee, Bom-Son
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.12A
    • /
    • pp.1233-1241
    • /
    • 2008
  • We design, fabricate, and measure a MIMO antenna system mountable on a small PCB (such as UMPC). The proposed antenna system accommodates three radiation elements on the PCB area of $40mm\;{\times}\;100mm$. Two of them employ a slot type and one uses a modified monopole with an inverted L shape expecting high isolation and polarization purity. The bandwidth of each proposed MIMO antenna ranges from 80MHz and 200MHz at the center frequency of 1.8 GHz. The isolations between ports have been found to be greater than 10dB over the interested frequency band. Besides, the proposed MIMO system has been evaluated in terms of ARC(Active Reflection Coefficient, TARC(Total ARC), correlation, MEG, and etc. The envelope correlation is calculated to be much less than 0.04 and the ratio of the mean effective gain(MEG) between the antennas is found to be close to unity.