• Title/Summary/Keyword: 1-planar graph

Search Result 37, Processing Time 0.016 seconds

ON THE MINIMUM WEIGHT OF A 3-CONNECTED 1-PLANAR GRAPH

  • Lu, Zai Ping;Song, Ning
    • Bulletin of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.763-787
    • /
    • 2017
  • A graph is called 1-planar if it can be drawn in the Euclidean plane ${\mathbb{R}}^2$ such that each edge is crossed by at most one other edge. The weight of an edge is the sum of degrees of two ends. It is known that every planar graph of minimum degree ${\delta}{\geq}3$ has an edge with weight at most 13. In the present paper, we show the existence of edges with weight at most 25 in 3-connected 1-planar graphs.

ENERGY OF PLANAR GRAPHS

  • Pirzada, S.
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • v.12 no.1
    • /
    • pp.7-11
    • /
    • 2008
  • The energy of a graph is the sum of the absolute values of its eigen values. We obtain some bounds for the energy of planar graphs in terms of its vertices, edges and faces.

  • PDF

LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR GRAPHS WITHOUT 6-CYCLES WITH CHORD

  • Dong, Aijun;Liu, Guizhen;Li, Guojun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.49 no.2
    • /
    • pp.359-365
    • /
    • 2012
  • Giving a planar graph G, let $x^'_l(G)$ and $x^{''}_l(G)$ denote the list edge chromatic number and list total chromatic number of G respectively. It is proved that if a planar graph G without 6-cycles with chord, then $x^'_l(G){\leq}{\Delta}(G)+1$ and $x^{''}_l(G){\leq}{\Delta}(G)+2$ where ${\Delta}(G){\geq}6$.

STRUCTURAL PROPERTIES FOR CERTAIN GLASSES OF INFINITE PLANAR GRAPHS

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.13 no.1_2
    • /
    • pp.105-115
    • /
    • 2003
  • An infinite locally finite plane graph is called an LV-graph if it is 3-connected and VAP-free. If an LV-graph G contains no unbounded faces, then we say that G is a 3LV-graph. In this paper, a structure theorem for an LV-graph concerning the existence of a sequence of systems of paths exhausting the whole graph is presented. Combining this theorem with the early result of the author, we obtain a necessary and sufficient conditions for an infinite VAP-free planar graph to be a 3LV-graph as well as an LV-graph. These theorems generalize the characterization theorem of Thomassen for infinite triangulations.

ONE-SIDED FATTENING OF THE GRAPH IN THE REAL PROJECTIVE PLANE

  • Choy, Jaeyoo;Chu, Hahng-Yun
    • Bulletin of the Korean Mathematical Society
    • /
    • v.59 no.1
    • /
    • pp.27-43
    • /
    • 2022
  • The one-sided fattenings (called semi-ribbon graph in this paper) of the graph embedded in the real projective plane ℝℙ2 are completely classified up to topological equivalence. A planar graph (i.e., embedded in the plane), admitting the one-sided fattening, is known to be a cactus boundary. For the graphs embedded in ℝℙ2 admitting the one-sided fattening, unlike the planar graphs, a new building block appears: a bracelet along the Möbius band, which is not a connected summand of the oriented surfaces.

ON THE TIGHTNESS CONDITIONS FOR MAXIMAL PLANAR GRAPHS

  • HWAN-OK JUNG
    • Journal of applied mathematics & informatics
    • /
    • v.4 no.1
    • /
    • pp.235-242
    • /
    • 1997
  • We characterize the tight structure of a vertex-accumula-tion-free maximal planar graph with no separating triangles. Together with the result of Halin who gave an equivalent form for such graphs this yields that a tight structure always exists in every 4-connected maximal planar graph with one end.

[2,3]-FACTORS IN A 3-CONNECTED INFINITE PLANAR GRAPH

  • Jung, Hwan-Ok
    • Journal of applied mathematics & informatics
    • /
    • v.10 no.1_2
    • /
    • pp.27-40
    • /
    • 2002
  • For two integers m, n with m $\leq$ n, an [m,n]-factor F in a graph G is a spanning subgraph of G with m $\leq$ d$\_$F/(v) $\leq$ n for all v ∈ V(F). In 1996, H. Enomoto et al. proved that every 3-connected Planar graph G with d$\_$G/(v) $\geq$ 4 for all v ∈ V(G) contains a [2,3]-factor. In this paper. we extend their result to all 3-connected locally finite infinite planar graphs containing no unbounded faces.

LABELLING OF SOME PLANAR GRAPHS WITH A CONDITION AT DISTANCE TWO

  • Zhang, Sumei;Ma, Qiaoling
    • Journal of applied mathematics & informatics
    • /
    • v.24 no.1_2
    • /
    • pp.421-426
    • /
    • 2007
  • The problem of vertex labeling with a condition at distance two in a graph, is a variation of Hale's channel assignment problem, which was first explored by Griggs and Yeh. For positive integer $p{\geq}q$, the ${\lambda}_{p,q}$-number of graph G, denoted ${\lambda}(G;p,q)$, is the smallest span among all integer labellings of V(G) such that vertices at distance two receive labels which differ by at least q and adjacent vertices receive labels which differ by at least p. Van den Heuvel and McGuinness have proved that ${\lambda}(G;p,q){\leq}(4q-2){\Delta}+10p+38q-24$ for any planar graph G with maximum degree ${\Delta}$. In this paper, we studied the upper bound of ${\lambda}_{p,q}$-number of some planar graphs. It is proved that ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+2(2p-1)$ if G is an outerplanar graph and ${\lambda}(G;p,q){\leq}(2q-1){\Delta}+6p-4q-1$ if G is a Halin graph.

FINITE GROUPS WHOSE INTERSECTION GRAPHS ARE PLANAR

  • Kayacan, Selcuk;Yaraneri, Ergun
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.1
    • /
    • pp.81-96
    • /
    • 2015
  • The intersection graph of a group G is an undirected graph without loops and multiple edges defined as follows: the vertex set is the set of all proper non-trivial subgroups of G, and there is an edge between two distinct vertices H and K if and only if $H{\cap}K{\neq}1$ where 1 denotes the trivial subgroup of G. In this paper we characterize all finite groups whose intersection graphs are planar. Our methods are elementary. Among the graphs similar to the intersection graphs, we may count the subgroup lattice and the subgroup graph of a group, each of whose planarity was already considered before in [2, 10, 11, 12].