DOI QR코드

DOI QR Code

LIGHT 3-CYCLES IN 1-PLANAR GRAPHS WITH DEGREE RESTRICTIONS

  • Zhang, Xin (Department of Mathematics Xidian University)
  • Received : 2012.12.13
  • Published : 2014.03.31

Abstract

In this paper, we prove that the 3-cycle is light in the family of 1-planar graphs with minimum vertex degree at least 5 and minimum edge degree at least 12. This generates a known result of Fabrici and Madaras [8].

Keywords

References

  1. M. O. Albertson and B. Mohar, Coloring vertices and faces of locally planar graphs, Graphs Combin. 22 (2006), no. 3, 289-295. https://doi.org/10.1007/s00373-006-0653-4
  2. J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, North-Holland, New York, 1976.
  3. O. V. Borodin, Solution of the Ringel problem on vertex-face coloring of planar graphs and coloring of 1-planar graphs, Metody Diskret. Analiz. 41 (1984), 12-26.
  4. O. V. Borodin, A new proof of the six color theorem, J. Graph Theory 19 (1995), no. 4, 507-521. https://doi.org/10.1002/jgt.3190190406
  5. O. V. Borodin, I. G. Dmitriev, and A. O. Ivanova, The height of a cycle of length 4 in 1-planar graphs with minimal degree 5 without triangles, J. Appl. Ind. Math. 3 (2009), no. 1, 28-31. https://doi.org/10.1134/S1990478909010049
  6. O. V. Borodin, A. V. Kostochka, A. Raspaud, and E. Sopena, Acyclic colouring of 1-planar graphs, Discrete Appl. Math. 114 (2001), no. 1-3, 29-41. https://doi.org/10.1016/S0166-218X(00)00359-0
  7. W. Dong, Light paths of 1-planar graphs with bounded minimum degree, manuscript.
  8. I. Fabrici and T. Madaras, The structure of 1-planar graphs, Discrete Math. 307 (2007), no. 7-8, 854-865. https://doi.org/10.1016/j.disc.2005.11.056
  9. D. Hudak and T. Madaras, On local structures of 1-planar graphs of minimum degree 5 and girth 4, Discuss. Math. Graph Theory 29 (2009), no. 2, 385-400. https://doi.org/10.7151/dmgt.1454
  10. D. Hudak and T. Madaras, On local properties of 1-planar graphs with high minimum degree, Ars Math. Contemp. 4 (2011), no. 2, 245-254.
  11. D. Hudak and P. Sugerek, Light edges in 1-planar graphs with prescribed minimum degree, Discuss. Math. Graph Theory 32 (2012), no. 3, 545-556. https://doi.org/10.7151/dmgt.1625
  12. S. Jendrol', T. Madaras, R. Sotak, and Z. Tuza, On light cycles in plane triangulations, Discrete Math. 197/198 (1999), 453-467. https://doi.org/10.1016/S0012-365X(99)90099-7
  13. V. P. Korzhik and B. Mohar, Minimal obstructions for 1-immersions and hardness of 1-planarity test, Springer Lecture Notes in Computer Science, 5417, 302-312, 2009. https://doi.org/10.1007/978-3-642-00219-9_29
  14. G. Ringel, Ein sechsfarbenproblem auf der Kugel, Abh. Math. Sem. Univ. Hamburg 29 (1965), 107-117. https://doi.org/10.1007/BF02996313
  15. X. Zhang, J. Hou, and G. Liu, On total colorings of 1-planar graphs, J. Comb. Optim.; Doi:10.1007/s10878-013-9641-9.
  16. X. Zhang and G. Liu, On edge colorings of 1-planar graphs without adjacent triangles, Inform. Process. Lett. 112 (2012), no. 4, 138-142. https://doi.org/10.1016/j.ipl.2011.10.021
  17. X. Zhang and G. Liu, On edge colorings of 1-planar graphs without chordal 5-cycles, Ars Combin. 104 (2012), 431-436.
  18. X. Zhang and G. Liu, On the lightness of chordal 4-cycle in 1-planar graphs with high minimum degree, Ars Mathematica Contemporanea 7 (2014), no. 2, 281-291.
  19. X. Zhang, G. Liu, and J.-L. Wu, Structural properties of 1-planar graphs and an application to acyclic edge coloring, Scientia Sinica Mathematica 40 (2010), 1025-1032.
  20. X. Zhang, G. Liu, and J.-L. Wu, Light subgraphs in the family of 1-planar graphs with high minimum degree, Acta Math. Sin. (Engl. Ser.) 28 (2012), no. 6, 1155-1168. https://doi.org/10.1007/s10114-011-0439-3
  21. X. Zhang and J.-L. Wu, On edge colorings of 1-planar graphs, Inform. Process. Lett. 111 (2011), no. 3, 124-128. https://doi.org/10.1016/j.ipl.2010.11.001
  22. X. Zhang, J.-L. Wu, and G. Liu, New upper bounds for the heights of some light subgraphs in 1-planar graphs with high minimum degree, Discrete Math. Theor. Comput. Sci. 13 (2011), no. 3, 9-16.
  23. X. Zhang, J.-L. Wu, List edge and list total coloring of 1-planar graphs, Front. Math. China 7 (2012), no. 5, 1005-1018. https://doi.org/10.1007/s11464-012-0184-7
  24. X. Zhang, Y. Yu, and G. Liu, On (p, 1)-total labelling of 1-planar graphs, Cent. Eur. J. Math. 9 (2011), no. 6, 1424-1434. https://doi.org/10.2478/s11533-011-0092-1