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Abstract. The one-sided fattenings (called semi-ribbon graph in this

paper) of the graph embedded in the real projective plane RP2 are com-
pletely classified up to topological equivalence. A planar graph (i.e., em-

bedded in the plane), admitting the one-sided fattening, is known to be

a cactus boundary. For the graphs embedded in RP2 admitting the one-
sided fattening, unlike the planar graphs, a new building block appears:

a bracelet along the Möbius band, which is not a connected summand of

the oriented surfaces.

1. Introduction

1.1. General perspective

The idea of fattening or thickening of a graph is not confined in the graph
theory but prevails across mathematics and physics, notably the knot theory
and its related algebras in the construction of quantum knot invariants. A basic
principle is to regard a graph embedded in a higher dimensional manifold as an
embedded Riemann surface with boundary via fattening, and then to calculate
physics theories defined over the Riemann surface as lit in the quantum field
theory predictions ([9] and the references therein). In the broad array, the per-
spectives entangled with Riemann surfaces have unleashed numerous prospects
and problems in contemporary mathematics and physics over decades and fur-
thermore has interacted with higher dimensional geometries via various dual-
ities. With the scope, we have pursued geometric and topological dynamical
systems, narrowly a study of flows on Riemann surfaces; particularly in this
paper, to reach out a purely graph-theoretic question.

Received December 29, 2020; Accepted September 9, 2021.

2010 Mathematics Subject Classification. Primary 05C10, 05C38, 37C10.
Key words and phrases. Fattening, one-sided fattening, graph, ribbon graph, semi-ribbon

graph, pre-semi-ribbon graph, Riemann surface, real projective plane, planar graph.
The first author was supported by the National Research Foundation of Korea (NRF)

grant funded by the Korea government (MSIT) (No. 2021R1C1C2011737). The second

author was supported by research fund of Chungnam National University.

c©2022 Korean Mathematical Society

27



28 J. CHOY AND H.-Y. CHU

1.2. One-sided fattening and the dynamical systems

The fattening of a planar graph usually stands for the two-sided fattening,
frequently alias ribbon graph in the literatures as depicted in the first one in
Fig. 1. In contrast, a fattening in this paper means a semi- or hemi-version of
the classical one. Thus a one-sided fattening makes sense, which was referred
to as a pre-semi-ribbon graph in the precedent work of the authors [3], depicted
in the latter two in Fig. 1.

The reader may be aware of that the terminology ‘semi-ribbon’ graph is
missing, but we used the term in a rather specific sense in loc. cit.

For a connected graph, a semi-ribbon graph is a one-sided fattened graph
whose (1-dimensional) boundary has precisely the two connected components:
the whole graph itself and a nearby cycle (called the smooth boundary in our
context). As an axiom we presume the nearby cycle as a full Eulerian cycle
and thus manifestly illuminates the meaning of one-sided fattening.

The semi-ribbon graph tightly pertains to the dynamo-systematic problem
of real analytic flows. Under the assumption that a real analytic flow on R2 has
a limit set (alias the ω-limit set) being a graph, the trajectory of the flow covers
only one side of the graph (as was observed in [5] and [7]). Along the vein, the
global attractors of analytic and polynomial flows on R2 are characterized up
to homeomorphisms in [8].

Figure 1. Two-sided and one-sided (local) fattenings of a graph

1.3. Main assertion

A graph Γ = (E, V ) in this paper always means a finite one, i.e., the edge
and vertex sets E, V are both finite.

A cactus is a union of finitely many (planar) disks which mutually intersect
at most one point, and furthermore the union is contracted to a point (Fig. 2
with a semi-ribbon graph, see Definition 2.2 for the semi-ribbon graph).

The real projective plane RP2 is the union of the Möbius band M and the
disk D2 identified along their boundary circles. A bracelet in M is a chain of
embedded circles as in the planar diagram Fig. 3 (see Definition 2.10 for rigor).

A cactal bracelet means a union of a bracelet and finitely many disjoint
cactus boundaries in D2 which intersect the bracelet precisely at a point re-
spectively. See Fig. 4, but a precise definition will be given in §2.4.
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Figure 2. A cactus and a semi-ribbon graph (with the fat-
tened area replaced by its boundary in gray)

Figure 3. The planar diagram of a Möbius band M and a
bracelet with two beads in M

The main assertion of this paper is as follows.

Theorem 1.1. Any semi-ribbon graph in the real projective plane RP2 is topo-
logically either the semi-ribbon graph of a cactus boundary as in Fig. 2 or the
one of a cactal bracelet as in Fig. 5.
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Figure 4. A cactal bracelet: a union of a two-bead-bracelet
and three cactus boundaries

Figure 5. A semi-ribbon graph of the cactal bracelet in Fig. 4

1.4. Further motivations

In the precedent co-works, we studied surface flows (e.g. [3]) and space flows
([4]) in the view of dynamical systems. Aforementioned in §1.1 partly, surface
flow and the underlying embedded graph theory have been studied as a part of
the 2d quantum field theory and the 2d gauge theory. This direction has been
kept coherent in the first named author’s works (see e.g. [2, Appendix B] and
the references therein) with a symmetry between 2d-4d (e.g. [6, 11]).

What we know or allege is the characterization of the semi-ribbon graphs
embedded in the oriented surfaces [3]: it was asserted that the semi-ribbon
graphs are only the cactus boundaries. Therefore these graphs are far nar-
rowly categorized in the even-valent graphs (amounting to the ones with a full
Eulerian cycle). See a quick example of an even-valent planar graph Fig. 6
which admits a semi-ribbon graph in RP2 but never in any oriented surfaces.

Let us start from any even-valent graph Γ, which is embedded in the space
R3 without loss of generality. Let us fatten Γ in two sides in the classical sense
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of the first figure in Fig. 1, so that Γ lies in the interior of the fattened band.
A well-known question is cast as:

capping off all the boundary circles with disks respectively,
what (oriented or unoriented) surface do we get?

The embedding of the given graph into the resulting surface is called map
([9, Definition 1.3.6]), which we do not use the terminology any longer in this
paper to be safe from the confusing dilogy. As there are plural but finite
ways of two-sided fattenings in R3 up to isotopy, we have crumbles for the
above question, e.g. the genus problem of the given graph ([10, §4.5]) and knot
invariants ([9, §6.2]).

In this paper, we adapted the ad hoc assumption that there exists a capping
disk whose boundary becomes a full Eulerian cycle of the given graph. Note
that any knot in R3 is realized in this way (without the assumption, one has a
link in general). On the other hand, the two-bead-bracelet Fig. 6 epitomizes a
sharp contrast in the genera of the resulting surfaces vis-a-vis the orientations
in the above question. It admits a semi-ribbon graph (cf. Fig. 5), however

Figure 6.

never as a graph embedded in any oriented surface because it is not a cactus
boundary as asserted in [3].

With the above question in mind, we study of the elemental building block
RP2 of the resulting closed unoriented surface. We hope to structure the semi-
ribbon graphs embedded in closed unoriented surfaces (cf. [10, §4.4]). Man-
ifestly we do not expect a succinct answer with a full description, since any
even-valent graphs other than the cactus boundaries, e.g. the complete graphs
K2n+1, n ≥ 2, are all included in this category. To see a complexity of the
resulting surfaces, let us add two more non-loop edges to Fig. 6. Then the
resulting surface is the Klein bottle.

We wrap up the introduction with coloration of the surface containing the
semi-ribbon graph, onto which was drawn our attention by an anonymous ref-
eree. So far the surfaces which are either an oriented surface or RP2, are always
2-colorable.

The contents of paper. Section 2 settles the prerequisites of one-sided fattening,
called semi-ribbon graph. It also recaps a semi-ribbon graph emerging from
‘oriented’ graph to invoke an origin of our problem sitting in the dynamical
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systems. A multi-layer structure of a graph embedded in a surface is introduced
in this section. With these preliminaries, we prove the main theorem in Section
3 of the topological classification of the semi-ribbon graphs in RP2. Appendix
recaps the topological classification of the planar semi-ribbon graphs, as an
application of the multi-layer structure.

Acknowledgement. J. Choy is grateful to Professor Bumsig Kim for his
support to J. Choy’s series lectures on D-modules on Riemann surfaces and for
the hospitality of research environments.

2. Preliminary: pre-semi-ribbon graph, semi-ribbon graph,
multi-layers and cactal bracelet

For a given graph embedded in a surface, we give the definitions of pre-
semi-ribbon graph and semi-ribbon graph in §2.1 and then the multi-layered
structure in §2.3. A cactal bracelet is also studied in §2.4 as a new class in
the case RP2. By these three subsections we are ready for the proof of Main
theorem. In §2.2, we explain the origin of the semi-ribbon graphs from the
dynamical systems.

By a graph Γ = (E, V ), we consistently mean a finite graph which consists of
finite sets E, V of edges and vertices respectively. A graph is called even-valent
if every vertex has even valency, i.e., the even number of adjoining edges (a
loop is counted twice).

2.1. Pre-semi-ribbon graph and semi-ribbon graph

Definition 2.1. Let Γ = (E, V ) be a connected even-valent graph embedded
in the interior of a 2-dimensional topological manifold S with the non-triviality
assumption E 6= ∅. A pre-semi-ribbon graph of Γ, denoted Γpsr, is a compact
subset of S such that for every point of Γ there exists an open neighborhood
whose intersection with Γpsr is alternating.

See Fig. 7 for the alternating fattening at a vertex of valency 4, where the
gray area and the black line segments denote Γpsr and Γ, respectively. In the
below hereafter, the gray areas are replaced by the boundary components other
than Γ, so called the smooth boundary. See also Item (7) below.

Let us draw quick anecdotes from the above definition, plus convention for
the later part and the more induced definitions.

(1) Since every point of Γ assumes of even valency, the ‘alternating’ makes
sense.

(2) The one-sided fattening also makes sense due to the alternating ax-
iom. As aforementioned in Introduction, the two-sided fattening is
classically known as a ribbon graph, which legitimates the notions,
pre-semi-ribbon graph, or semi-ribbon graph below.

(3) In our figures from now on, rather than shading the full fattened area,
we plot its boundary, which suffices and would be even succincter in
our purpose.
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Figure 7. Local depiction of pre-semi-ribbon graph at a ver-
tex of valency 4

(4) The boundary Bd(Γpsr) is a disjoint union of Γ and (topologically em-
bedded) circles such that locally these circles are locally sitting in al-
ternating sectors of Γ. This property can be an alternative to define
Γpsr. Ref. Item (8) below.

(5) Near at a non-vertex of Γ, Bd(Γpsr) is homeomorphic to the union of
(local) Γ and its parallel shift, as depicted in Fig. 8.

Figure 8. Local depiction of the boundary Bd(Γpsr) of a pre-
semi-ribbon graph Γpsr at a non-vertex point or a bivalent
vertex of Γ

(6) Near at a vertex of Γ, Bd(Γpsr) is homeomorphic to the union of (local)
Γ and its alternating nearby hyperbolas, as depicted in Fig. 9.

(7) In both of the above figures, the black line segments are parts of the
given graph Γ while gray ones are new boundary of the fattening Γpsr.
Therefore

Bd(Γpsr) = Γ t Bdsm(Γpsr) (disjoint union)

where the latter component represents the gray segment. The notation
Bdsm(Γpsr) stands for the smooth boundary, as an obvious small defor-
mation of Γpsr renders the new boundary smooth (in our topological
context, the smoothness is never essential, but just for expediency).

(8) Now one can see immediately that even without the assumption that
Bdsm(Γpsr) is a disjoint union of circles, it must be from the above
observation of local smooth boundary. Indeed, as Bdsm(Γpsr) is locally
homeomorphic to an open interval, now the compactness of Γ deduces
that Bdsm(Γpsr) is a disjoint union of finitely many circles.
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Figure 9. Local depiction of the boundary Bd(Γpsr) of a pre-
semi-ribbon graph Γpsr at a vertex with valency 6

Definition 2.2. With the ad hoc assumption that Bdsm(Γpsr) is connected,
i.e., an embedded circle, we say Γpsr semi-ribbon graph of Γ, denoted Γsr.

2.2. Remarks on pre-semi-ribbon graph of an oriented graph

This subsection is intended to introduce pre-semi-ribbon graph of an oriented
graph previously studied in [3]. Let us briefly explain where the orientation
comes from. First a given real analytic flow on R2 is assumed to have the
singular locus as isolated points and to have its ω-limit set as a graph. Hence
the orientation of the ω-limit graph is inherited from the flow. The vertices
of valency ≥ 3 of the limit graph are singular points of the flow. Combined
with the well-known theorem of Bendixon [1], each sector with a vertex center
is necessarily hyperbolic (Fig. 10).

Figure 10. Hyperbolic vertex

As a result each sector (whose center is not necessarily a vertex but any
point of the graph) attains an orientation, which is called an oriented sector.
Now a pre-semi-ribbon graph is defined for an oriented sector.
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Definition 2.3 ([3, Definitions 3.2, 3.3]). Let Γ be an oriented planar graph.
A compact subset of R2 is a pre-semi-ribbon graph Γpsr of Γ if there is a set of
open neighborhoods Ux of x ∈ Γ in R2 covering Γpsr such that for each oriented
sector T centered at x, there exists an orientation-preserving homeomorphism
φx : (Ux, T ) ∼= (B0, B

≥0
0 ) satisfying

(1) φx(Γpsr ∩ T ) = B
[0,1/2]
0 , φx(Bd(Γpsr) ∩ T ) = B0

0 tB
1/2
0

and for each non-oriented sector T , Γpsr ∩ Int(T ) = ∅. Here the notation and
the orientation convention are subject to the following. B0 is the radius 1
closed ball in R2 centered at the origin and BI

0 denotes the subset of B0 with

constraint of the vertical coordinate y ∈ I, e.g., B≥00 is the upper hemi-disc.
The orientation of R2 obeys the counter-clock direction and its subsets, except
T , have inherited ones. And a sector T in Ux is oriented if the two separatices
are distinct and the arrows associated to them are heading from left to right
via φx. See Fig. 11.

Figure 11. An oriented sector and the (local) pre-semi-
ribbon graph

2.3. Multi-layer structure

A graph embedded in any surface (with an infinity fixed) admits a layered
structure by peeling off from the infinity. This subsection mostly concentrates
on properties of the layer structure of the planar graphs, as our primary concern
is RP2 whose 2-fold cover is the 2-sphere S2. In Appendix we will illustrate
its application to the planer semi-ribbon graphs as a mild introduction. Hence
the reader looking for a warm-up before the proof of Main theorem in §3, can
read Appendix first.

Definition 2.4. Let us declare any point of a closed surface S the infinity ∞.
For a graph Γ embedded in S \ ∞, the shell subgraph ΓS = (ES, V S) is the
subgraph of Γ whose points can be path-connected to the infinity ∞ in the
complement S \ Γ.

The kernel subgraph ΓK = (EK, V K) is the subgraph of Γ defined by setting

EK := E \ ES, V K := V \ V S ∪ the set of endpoints of edges in EK.
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Note in the above definition that the layers are finitely many, equally, peeling
off the out layers is an exhaustive procedure. See an example of a multi-layered
planar graph in Fig. 12.

Figure 12. The multi-layers of the planar graph in the upper
left corner: upper right one is the first layer, lower left one is
the second and the lower right one is the third.

Definition 2.5. Suppose the surface S = S2 and a graph Γ is embedded in S2.
By choosing ∞ outside Γ, we have Γ ⊂ R2 = S \∞, i.e., a planar graph. For a

planar graph Γ, we define the hull Γ̂ as the (compact) subset of R2 with all the
simple cycles of Γ filled into the disks. Here, ‘simple’ means no self-intersection

point. By the construction, Γ̂ is simply connected, hence contractible to a
point.

Definition 2.6. A tree Γ means a planar graph such that Γ = Γ̂, i.e., no cycle
allowed, hence contractible to a point. Each edge of a tree is called a stem in
this paper.

We say a planar graph Γ a cactal tree if Γ = Γ̂ \ Int(Γ̂) where Int stands
for the interior in R2. Obviously, any planar tree and any cactus boundary are
cactal trees. Observe that a cactal tree consists of the stems and the cactal
blades, depending on if the interiors are empty or not. See Fig. 13.

We say an edge of a planar graph Γ is an internal edge if it is contained in

the interior Int(Γ̂).

Lemma 2.7. Let Γ = (E, V ) be a connected planar graph with E 6= ∅. Then
Γ = ΓS, equivalently Γ has the empty kernel subgraph, if and only if Γ is a
cactal tree.

Proof. This assertion is obvious since every internal edge lies in the kernel
ΓK. �

Lemma 2.8. Let Γ = (E, V ) be a connected planar graph with E 6= ∅. If Γ is
even-valent, then the shell subgraph ΓS is a cactus boundary. Hence the kernel
subgraph ΓK is even-valent.
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Figure 13. A cactal tree

Proof. If there would be a stem in the shell cactal tree ΓS (Lemma 2.7), then
there does not exist a full Eulerian cycle since a stem is one-way. Since the
kernel ΓK is contained in the hulls of cactal blades of ΓS, Γ neither allows a
full Eulerian cycle. However this is absurd to the fact that the even-valency
amounts to the existence of a full Eulerian cycle.

The second assertion is obvious from that a cactus boundary, e.g. ΓS, is
even-valent. Indeed at every vertex there are even numbers of the adjoining
edges from ΓS, hence from ΓK by counting the leftover edges. �

Lemma 2.9. Suppose that a connected planar graph Γ with E 6= ∅ admits a
semi-ribbon graph Γsr and furthermore that the smooth boundary Bdsm(Γsr) is
path-connected to the infinity in R2 \ Γ. Then Γ is a cactus boundary with the
outward Γsr as in Fig. 2.

Proof. The assumption of the path-connectedness implies that Bdsm(Γsr) is not
arbitrarily close to the kernel ΓK, which means Γ = ΓS. Now by Lemma 2.8, Γ
is a cactus boundary and the semi-ribbon graph is necessarily as in Fig. 2. �

2.4. Cactal bracelet

Identifying RP2 = S2/(Z/2Z) where the group Z/2Z acts antipodal, let
p : S2 → RP2 be the natural projection. For a given graph Γ or its semi-
ribbon graph Γsr in RP2, we declare the north pole of S2 denoted ∞, which
always assumes to avoid p−1(Γ), p−1(Γsr). Let D,D′ be the upper and lower
hemispheres of S2, respectively. Frequently we identify S2 \ ∞ ∼= R2 via the
stereographic projection, so that the restriction p : R2 → RP2 makes sense. We
also keep the same notation p as various restriction maps of the original one.

Definition 2.10. A graph Γ in RP2 is a cactal bracelet if its pullback p−1(Γ)
in D \ ∞ ⊂ R2 is a union of the pullback B of a bracelet and finitely many

cactus boundaries E1, E2, . . . such that the hull B̂ (as a planar graph) and each

Êi intersect precisely at one point, and Êi are mutually disjoint.

For examples of cactal bracelets, see Fig. 3 and Fig. 4.
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3. Proof of Main theorem

In this section we prove Main Theorem 1.1, which we proceed in §3.2 after
listing in §3.1 the notations upon the needs for the proof.

3.1. Notations

The north pole∞ ∈ D ⊂ S2 = D∪D′ maps via the projection p : S2 → RP2

to a point in RP2 \ Γsr, again denoted ∞. We may assume that ∞ is path-
connected to the smooth boundary Bdsm(Γsr) in RP2 \ Γ.

Recall that D \ ∞ is identified with R2 \ Int(D′) via the stereographic pro-
jection, where Int denotes the interior. Recall also that by the same notation
p, we denote various restrictions p|D, p|D\∞, p|Int(D), p|Bd(D) to RP2. Note that

p : S2 −→ RP2 and the restriction to Int(D) is a homeomorphism while the
restriction to Bd(D) mapping onto the meridian C of RP2 is of 2 : 1.

The equator Bd(D) is the union of two semicircles, denoted C1, C2, such
that the restrictions p : Ci → C are homeomorphisms except the two endpoints
mapping to a point.

Let Γ̃ := p−1(Γ) in D. If C ⊂ Γ, then C1, C2 are subgraphs of Γ̃.

3.2. Proof of Theorem 1.1

Now the proof goes in the two cases depending on if there is a cycle of Γ
non-contractible to a point in RP2. If all the cycles of Γ are contractible, using
a homeomorphism of RP2, we may assume that all Γ,Bdsm(Γsr) and ∞ lie in
the open disk p(Int(D)) of RP2, and moreover that ∞ is path-connected to
Bdsm(Γsr) in p(D \ Γ). Indeed what we need to prove is that Γ is contractible
to a point in RP2. Since any simple cycle of Γ is the boundary of a disk
embedded in RP2, shrinking the disks one-by-one enables Γ to have no cycles
in the first place, hence a tree. Likewise, shriking the edges of the tree assures
the contractibility of Γ to a point in RP2.

Pulled back along the homeomorphism p : Int(D)→ p(Int(D)), p−1(Γsr) is a

semi-ribbon graph of Γ̃ = p−1(Γ). Thus by Lemma 2.9, p−1(Γsr) is the outward

semi-ribbon graph of a cactus boundary and Γ̃ is the cactus boundary as in
Fig. 2. This completes the proof of the first case.

What is left is the case when there is a cycle non-contractible to a point.
We may assume the cycle is a simple one, so that it can be set the median C,
because the fundamental group π1(RP2) ∼= Z/2Z is generated by C.

We claim that only one of C1, C2 is arbitrarily close to p−1(Bdsm(Γsr)) ∼= S1.
Since C ⊂ Γ is arbitrarily close to p−1(Bdsm(Γsr)), so is at least one of C1, C2,
say C1, to p−1(Bdsm(Γsr)). We are left to prove that C2 is not arbitrarily close
to p−1(Bdsm(Γsr)). If C2 also would be arbitrarily close to p−1(Bdsm(Γsr)),
then p−1(Bdsm(Γsr)) is arbitrarily close to both C1, C2 and thus Γsr fattens C
two-sided in RP2. This violates the one-sidedness of semi-ribbon graphs.
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Let Γ′ be the subgraph of Γ̃ in R2 which is arbitrarily close to the circle
p−1(Bdsm(Γsr)). Since by the above claim, C1 is arbitrarily close to

p−1(Bdsm(Γsr)) while C2 is not, Γ′ is the closure of Γ̃ \ C2 in R2.

With Γ̃,Γ′,Bdsm(Γsr), D
′ embedded in R2 via p−1, we claim the following:

(1) Γ′ admits a semi-ribbon graph in R2 with the smooth boundary
Bdsm(Γ′sr) = p−1(Bdsm(Γsr)). Equivalently Γ′ is a cactus boundary,

or the hull Γ̂′ is a cactus.
(2) The hull Γ̂′ contains the disk D′.

We complete the proof admitting the claims for a while. Since the hull Γ̂′

is a cactus containing the disk D′, there is a disk component of the cactus Γ̂′

containing D′, which is denoted D′′. We know that C1 is a subset of Γ′ =

Bd(Γ̂′), hence of Bd(D′′). We can write the circle boundary

Bd(D′′) = C1 ∪ C ′2,

where C ′2 is a simple subpath of Γ′ whose terminal vertices coincide with the
ones of C1 respectively. It is immediate that C1 and C ′2 together are projected
via p to the bracelet of the Möbius strip of RP2 as in Fig. 3 (recall C1 projects
to the median). Hence summing up our argument, we obtain the description
of the semi-ribbon graph of a cactal bracelet as in Fig. 5.

It remains to check the claim. We prove Item (2) first. This amounts
to that the circle p−1(Bdsm(Γsr)) encloses D′. We observe that the circle
p−1(Bdsm(Γsr)) dissects R2 into two connected components, and recall that
p−1(Γ) is contained in the bounded component. As C1 ⊂ p−1(Γ)∩D′, it is also
contained in the bounded component. So is D′, which proves Item (2).

For Item (1), the premise that Γ′ is arbitrarily close to p−1(Bdsm(Γsr)),
assures that it is path-connected to ∞. Therefore Γ′ equals its shell (Γ′)S. By
Lemma 2.7, it is a cactal tree. We prove there is no stem in the cactal tree Γ′.
By Item (2), any stem intersects R2 \D′. However no edge of Γ′ lying outside
D′ is two-sided fattened by p−1(Γsr). This forces no stem in Γ′. �

Appendix A. Pre-semi-ribbon and semi-ribbon graphs of the
planar graphs

In the appendix we illustrate an application of the multi-layer structure to
the planar graphs. This structure can be put differently in terms of the 2-
coloration as the even-valent planar graphs are 2-colorable, aforementioned in
§1.4.

A.1. Pre-semi-ribbon graphs of the planar graphs

Proposition A.1. Whenever Γ is a connected even-valent planar graph with
E 6= ∅, it admits a pre-semi-ribbon graph Γpsr. Moreover there are precisely
two pre-semi-ribbon graphs up to deformation: inward and outward.
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Proof. We apply the induction hypothesis on the number of edges thanks to
Lemma 2.8. The initial hypothesis is the case Γ = ΓS, i.e., a cactus boundary
by Lemma 2.8. In this case, it is rather easy to see the two pre-semi-ribbon
graphs (recall Fig. 2). First observe that a circle allows two pre-semi-ribbon
graphs in and outwards. Since a cactus boundary is a connected union of
circles, one circle’s pre-semi-ribbon graph completely determines all the others’
one.

Unless the kernel ΓK = ∅, both ΓS,ΓK admit pre-semi-ribbon graphs only
in two ways respectively: in and outwards. If the shell ΓS has the inward
one, then the outward one does ΓK, because ΓS,ΓK have an intersection vertex
where the pre-semi-ribbon graphs ΓS

psr, ΓK
psr are merged by rendering them.

This rendering is a local problem which enables the alternating fattening in
the definition of pre-semi-ribbon graph (Fig. 14). See also Fig. 15 for a (global)

Figure 14. A local merging of ΓS
psr,Γ

K
psr at an intersection vertex

example. The case of out-in (opposite to the above in-out choice) is similar
but easier since ΓS

psr,Γ
K
psr are disjoint. The remaining combinations in-in and

out-out are impossible to stand by the alternating reason. This completes the
proof. �

A.2. Semi-ribbon graphs of the planar graphs

The semi-ribbon graphs are also reconstructed from the multi-layered struc-
ture. Recall that a circle allows the semi-ribbon graphs in the two ways: in and
outward, which is the only exception as we will see in the following proposition
(cf. [3, Lemma 3.11]).

Proposition A.2. If a connected planar graph Γ with E 6= ∅ admits a semi-
ribbon graph, then it is either

(i) a cactus boundary or
(ii) the union of cactus boundaries and a circle such that the circle encloses

all the cactus boundaries, intersects each cactus boundary precisely at
one vertex and the cactus boundaries are mutually disjoint (Fig. 16).
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Figure 15. Merging pre-semi-ribbon graphs of two layers

Moreover unless Γ is a circle, its semi-ribbon graph Γsr is given outward,
which is unique up to deformation.

Figure 16. The case (ii): a circle encloses mutually disjoint
cactus boundaries and intersects each of them once.

Proof. There are several proofs, among which we rely on the multi-layers ap-
proach.

Suppose Γ = ΓS first. Since Γ is even-valent (by the existence of a semi-
ribbon graph), Lemma 2.8 assures the case (i).

Suppose now Γ 6= ΓS, i.e., ΓK 6= ∅. Since Γsr would be a special case of Γpsr,
the proof of Proposition A.1 tells that Γsr is obtained from the rendering of
the inward ΓS

psr and outward ΓK
psr because Γsr should be connected. Further-

more the connectivity of Γsr implies that ΓS is a circle with the inward ΓS
psr.
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The connectivity of Γ implies that ΓS and any connected component (being
necessarily a cactus boundary) of ΓK intersect precisely at one vertex, since
otherwise ΓS would be disconnected through the rendering. See Fig. 16. Hence
we get the case (ii).

Note finally that the kernel ΓKK of ΓK is empty. For, otherwise, ΓKK
psr is

inward (recall ΓK
psr is outward), which is absurd to the connectivity of Γsr. As

there is no deeper layer, the assertion is proven. �

Remark A.3. One can unify the above cases (i), (ii) as follows. We compactify
the ambient plane R2 to the 2-sphere S2. Then Γ is again a cactus boundary
in S2, and Γsr can be understood outward.
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