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LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR

GRAPHS WITHOUT 6-CYCLES WITH CHORD

Aijun Dong, Guizhen Liu, and Guojun Li

Abstract. Giving a planar graph G, let χ′
l(G) and χ′′

l (G) denote the list
edge chromatic number and list total chromatic number of G respectively.
It is proved that if a planar graph G without 6-cycles with chord, then

χ′
l(G) ≤ ∆(G) + 1 and χ′′

l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.

1. Introduction

The terminology and notation used but undefined in this paper can be found
in [1]. Let G = (V,E) be a graph. We use V (G), E(G), F (G), ∆(G) and δ(G)
to denote the vertex set, edge set, face set, maximum degree, and minimum
degree of G, respectively. Let dG(x) or simply d(x), denote the degree of a
vertex (face) x in G. A vertex (face) x is called a k-vertex (k-face), k+-vertex
(k+-face), k−-vertex, if d(x) = k, d(x) ≥ k, d(x) ≤ k. We use (d1, d2, . . . , dn)
to denote a face f if (d1, d2, . . . , dn) are the degree of vertices incident to the
face f . If u1, u2, . . ., un are the vertices on the boundary walk of a face f ,
then we write f = u1u2 · · ·un. Let δ(f) denote the minimal degree of vertices
incident to f . We use fi(v) denote the number of i-faces incident to v for each
v ∈ V (G). Let ni(f) denote the number of i-vertices incident to f for each
f ∈ F (G). A cycle C of length k is called k-cycle, if xy ∈ E(G)\E(C) and x,
y ∈ V (C), the cycle C is called k-cycle with chord.

The mapping L is said to be a total assignment for a graph G if it assigns
a list L(x) of possible colors to each element x ∈ V ∪ E. If G has a proper
total coloring ϕ(x) ∈ L(x) for all x ∈ V ∪ E, then we say that G is total-L-
colorable. Let f : V ∪ E → N be a function into the positive integers. We say
that G is total-f -choosable if it is total-L-colorable for every total assignment
L satisfying |L(x)| = f(x) for all x ∈ V ∪ E. The list total coloring number
χ′′
l (G) of G is the smallest integer k such that G is total-f -choosable when

f(x) = k for each x ∈ V ∪ E. The list edge coloring number χ′
l(G) of G is
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defined similarly in terms of coloring edges alone; and so are the concept of
edge-f -choosable. If G is a graph that can not be edge-(∆(G) + 1)-choosable
or total-(∆(G) + 2)-choosable graph with the fewest vertices and edges, then
we call it a critical graph. On the list coloring number of a graph G, there is a
famous conjecture known as the List Coloring Conjecture.

Conjecture 1. For a multigraph G,

(a) χ′
l(G) = χ′(G); (b) χ′′

l (G) = χ′′(G).

Part (a) of the above conjecture was formulated independently by Vizing,
by Gupta, by Alberson and Collins, and by Bollobás and Harris [5, 11]. It
is well known as the List Coloring Conjecture. Part (b) was formulated by
Borodin, Kostochka and Woodall [2]. Part (a) and Part (b) has been proved
for outerplanar graphs [13], and graphs with ∆ ≥ 12 which can be embedded
in a surface of nonnegative characteristic [2]. List Coloring Conjecture has
been proved for a few other special graphs, such as bipartite multigraphs [4],
complete graphs of odd order [6]. There are several related results for planar
graphs without some short cycles or by adding girth restrictions [7, 8, 9, 3, 16,
14, 15, 10].

In this paper, we shall show that if G is a planar graph without 6-cycles
with chord, then χ′

l(G) ≤ ∆(G) + 1 and χ′′
l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.

2. Planar graphs without 6-cycles with chord

First let us introduce an important lemma.

Lemma 2.1. Let G be a critical planar graph without 6-cycles with chord.
If ∆(G) ≥ 6, then there is an edge uv ∈ E(G) such that min{d(u), d(v)} ≤
⌊∆(G)+1

2 ⌋ and d(u) + d(v) ≤ max{8,∆(G) + 2}.

Proof. For G is a critical planar graph with ∆(G) ≥ 6, then G contains no
(4, 4, 5−)-face f = uvw. By contradiction, let L′ and L′′ be any list assignments
such that |L′(e)| = ∆(G) + 1 for each e ∈ E(G) and |L′′(x)| = ∆(G) + 2 for
each x ∈ V (G) ∪ E(G).

Let G′ = G−{uv, vw,wu}. By G is a critical graph, G′ is edge-L′-colorable.
Now there are at least three colors available for uv, and at least two colors
for vw and wu. We can easily color vw, uw, and uv successively. So G is
edge-L′-colorable, a contradiction.

For the same reason, G′ is total-L′′-colorable. Erase the colors of the vertices
u, v, w. For each element x incident with f , we define a reduced total list
L̄′′(x) such that L̄′′(x) = L′′(x)\{ϕ(x′) | x′ is incident with or adjacent to x,
and, x′ is not incident with f} where ϕ(x′) denotes the color of the element
x′. Then |L̄′′(u)| ≥ 4, |L̄′′(v)| ≥ 4, |L̄′′(w)| ≥ 2, |L̄′′(uv)| ≥ 4, |L̄′′(uw)| ≥ 3,
|L̄′′(vw)| ≥ 3. If there is a color α ∈ L̄′′(uw)\L̄′′(u), then we can color uw with
the color α, and color w, wv, v, uv, and u successively. So L̄′′(uw) ⊆ L̄′′(u).
Similarly, L̄′′(vw) ⊆ L̄′′(v). If there is a color β ∈ L̄′′(u)\L̄′′(v), then we can



LIST EDGE AND LIST TOTAL COLORINGS OF PLANAR GRAPHS 361

color u with β, and color w, uw, vw, uv and v successively. So L̄′′(u) = L̄′′(v).
Thus there is a color γ ∈ L̄′′(uw)

∩
L̄′′(v). We color uw and v with γ, and

color w, vw, uv and u successively. From the above discussion, in any case, f
is total-L̄′′-colorable. So G is total-L′′-colorable, a contradiction.

In the following, we show that for the critical planar graph without 6-
cycles with chord, if ∆(G) ≥ 6, then there is an edge uv ∈ E(G) such that

min{d(u), d(v)} ≤ ⌊∆(G)+1
2 ⌋ and d(u) + d(v) ≤ max{8,∆(G) + 2}. By contra-

diction, we have d(u)+d(v) ≥ max{9,∆(G)+3} for each edge uv ∈ E(G) such

that min{d(u), d(v)} ≤ ⌊∆(G)+1
2 ⌋. It is clear that δ(G) ≥ 3.

By Euler’s formula |V |− |E|+ |F | = 2 and
∑

v∈V (G) d(v) =
∑

f∈F (G) d(f) =

2|E|, we have∑
v∈V (G)

(2d(v)− 6) +
∑

f∈F (G)

(d(f)− 6) = −6(|V | − |E|+ |F |) = −12.

Define an initial charge function w on V (G)∪F (G) by setting w(v) = 2d(v)−
6 if v ∈ V (G) and w(f) = d(f)−6 if f ∈ F (G), so that

∑
x∈V (G)∪F (G) W (x) =

−12. Now redistribute the charge according to the following discharging rules.
For convenience, let ¯w(v) denote the total charge transferred from a vertex

v to all its incident 4- and 5-faces where d(v) = 4.

D1. If f is a 3-face incident with a vertex v, then v gives f charge 2− ¯w(v)
f3(v)

if

d(v) = 4, 4
3 if d(v) = 5, 3

2 if d(v) ≥ 6.

D2. If f is a 4-face incident with a vertex v, then v gives f charge 1
2 if

d(v) = 4 or 5, 1 if d(v) ≥ 6.

D3. If f is a 5-face incident with a vertex v, then v gives f charge 1
5 if

d(v) = 4 or 5, 1
3 if d(v) ≥ 6.

Let the new charge of each element x be w′(x) for each x ∈ V (G) ∪ F (G).
In the following, let us check the new charge of each element x ∈ V (G) ∪

F (G).
Suppose d(v) = 3. Then w′(v) = w(v) = 0.
Suppose d(v) = 4. Then w(v) = 2, f3(v) ≤ 4. If f3(v) ≥ 1, then w′(v) ≥

2− 2− ¯w(v)
f3(v)

f3(v)− ¯w(v) = 0 by D1. Otherwise, i.e., f3(v) = 0, then f4(v) ≤ 2,

f5(v) ≤ 4 for G contains no 6-cycles with chord. We have w′(v) > 2− 1
2 × 2−

1
5 × 4 = 1

5 > 0 by D2 and D3.
Suppose d(v) = 5. Then w(v) = 4, f3(v) ≤ 3 for G contains no 6-cycles with

chord. If f3(v) = 3, then f4(v) = 0 and f5(v) = 0 for G contains no 6-cycles
with chord. We can get w′(v) ≥ 4 − 4

3 × 3 = 0 by D1. If f3(v) = 2, then
f4(v) ≤ 1 and f5(v) ≤ 1 for G contains no 6-cycles with chord. We can get
w′(v) ≥ 4 − 4

3 × 2 − 1
2 − 1

5 = 19
30 > 0 by D1, D2 and D3. If f3(v) = 1, then

f4(v) ≤ 2 and f5(v) ≤ 2 for G contains no 6-cycles with chord. We can get
w′(v) ≥ 4 − 4

3 − 1
2 × 2 − 1

5 × 2 = 19
15 > 0 by D1, D2 and D3. If f3(v) = 0,
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then f4(v) ≤ 2 or f5(v) ≤ 5 for G contains no 6-cycles with chord, we have
w′(v) > 4− 1

2 × 2− 1
5 × 5 = 2 > 0 by D2 and D3.

Suppose d(v) = 6. Then w(v) = 6, f3(v) ≤ 4 for G contains no 6-cycles with
chord. If f3(v) = 4, then f4(v) = 0 and f5(v) = 0 for G contains no 6-cycles
with chord. We can get w′(v) ≥ 6 − 3

2 × 4 = 0 by D1. If f3(v) = 3, then
f4(v) ≤ 1 and f5(v) ≤ 1 for G contains no 6-cycles with chord. We can get
w′(v) ≥ 6 − 3

2 × 3 − 1 − 1
3 = 1

6 > 0 by D1, D2 and D3. If f3(v) = 2, then
f4(v) ≤ 2 and f5(v) ≤ 2 for G contains no 6-cycles with chord. We can get
w′(v) ≥ 6 − 3

2 × 2 − 1 × 2 − 1
3 × 2 = 1

3 > 0 by D1, D2 and D3. If f3(v) = 1,
then f4(v) ≤ 3 and f5(v) ≤ 3 for G contains no 6-cycles with chord. We can
get w′(v) ≥ 6 − 3

2 − 1 × 3 − 1
3 × 3 = 1

2 > 0 by D1, D2 and D3. If f3(v) = 0,
then f4(v) ≤ 3 or f5(v) ≤ 6 for G contains no 6-cycles with chord, we have
w′(v) > 6− 1× 3− 1

3 × 6 = 1 > 0 by D2 and D3.
Suppose d(v) = 7. Then w(v) = 8, f3(v) ≤ 5 for G contains no 6-cycles with

chord. If f3(v) = 5, then f4(v) = 0 and f5(v) = 0 for G contains no 6-cycles
with chord. We can get w′(v) ≥ 8 − 3

2 × 5 = 1
2 > 0 by D1. If f3(v) = 4,

then f4(v) ≤ 1 and f5(v) = 0 for G contains no 6-cycles with chord. We
can get w′(v) ≥ 8 − 3

2 × 4 − 1 = 1 > 0 by D1 and D2. If f3(v) = 3, then
f4(v) ≤ 2 and f5(v) ≤ 2 for G contains no 6-cycles with chord. We can get
w′(v) ≥ 8 − 3

2 × 3 − 1 × 2 − 1
3 × 2 = 5

6 > 0 by D1, D2 and D3. If f3(v) = 2,
then f4(v) ≤ 3 and f5(v) ≤ 3 for G contains no 6-cycles with chord. We can
get w′(v) ≥ 8− 3

2 × 2− 1× 3− 1
3 × 3 = 1 > 0 by D1, D2 and D3. If f3(v) ≤ 1,

then f4(v) ≤ 3 or f5(v) ≤ 7 for G contains no 6-cycles with chord, we have
w′(v) > 8− 3

2 − 1× 3− 1
3 × 7 = 7

6 > 0 by D1, D2 and D3.
Suppose d(v) = 8. Then w(v) = 10, f3(v) ≤ 6 for G contains no 6-cycles

with chord. If f3(v) = 6 or 5, then f4(v) = 0 and f5(v) = 0 for G contains
no 6-cycles with chord. We can get w′(v) ≥ 10 − 3

2 × 6 = 1 > 0 by D1. If
f3(v) = 4, then f4(v) ≤ 1 and f5(v) ≤ 1 for G contains no 6-cycles with chord.
We can get w′(v) ≥ 10− 3

2 ×4−1− 1
3 = 8

3 > 0 by D1, D2 and D3. If f3(v) = 3,
then f4(v) ≤ 2 and f5(v) ≤ 3 for G contains no 6-cycles with chord. We can
get w′(v) ≥ 10− 3

2 ×3−1×2− 1
3 ×3 = 5

2 > 0 by D1, D2 and D3. If f3(v) = 2,
then f4(v) ≤ 4 and f5(v) ≤ 4 for G contains no 6-cycles with chord. We can
get w′(v) ≥ 10− 3

2 ×2−1×4− 1
3 ×4 = 5

3 > 0 by D1, D2 and D3. If f3(v) ≤ 1,
then f4(v) ≤ 4 or f5(v) ≤ 8 for G contains no 6-cycles with chord, we have
w′(v) > 10− 3

2 − 1× 4− 1
3 × 8 = 11

6 > 0 by D1, D2 and D3.

Suppose d(v) ≥ 9. Then w(v) = 2d(v) − 6, f4(v) ≤ d(v) − 4
3 × f3(v),

f5(v) ≤ d(v) − 4
3f3(v) for G contains no 6-cycle with chord. So w′(v) ≥

2d(v) − 6 − 3
2f3(v) − f4(v) − 1

3f5(v) ≥ 2d(v) − 6 − 3
2f3(v) − d(v) + 4

3f3(v) −
1
3d(v) +

4
9f3(v) ≥

2
3d(v) − 6 + 5

18f3(v) by D1, D2 and D3. For 0 ≤ f3(v), we

have w′(v) ≥ 2
3d(v)− 6 ≥ 0.

Suppose d(f) = 3. Then w(f) = −3.
Case 1. δ(f) = 3, then f is a (3, 6+, 6+)-face by assumption. We have

w′(f) = −3 + 3
2 × 2 = 0 by D1.
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Case 2. δ(f) = 4, then f is a (4, 4, 6+)- or (4, 5+, 5+)-face for G contains
no (4, 4, 5−)-face.

Case 2.1. f is a (4, 4, 6+)-face. For convenience, let f = uvw where d(u) =
d(v) = 4. If one of the 4-vertex is incident to at least three 3-faces, without loss
of generality, let f3(u) ≥ 3, then f4(u) = f5(u) = 0 and f3(v)+f4(v)+f5(v) ≤ 2

for G contains no 6-cycles with chord. We have w′(f) ≥ −3+ 1
2 +

3
2 +

2− ¯w(v)
f3(v)

≥
−3 + 1

2 + 3
2 + 1 = 0 by D1, D2 and D3. Otherwise, i.e., f3(u) ≤ 2, f3(v) ≤ 2,

then we have 2− ¯w(v)
f3(v)

≥ 4
5 for G contains no 6-cycles with chord and by D1, D2

and D3. So w′(f) ≥ −3 + 4
5 × 2 + 3

2 = 1
10 > 0 by D1.

Case 2.2. f is a (4, 5+, 5+)-face. By D1, D2 and D3, we have 2− ¯w(v)
f3(v)

≥ 1
2 .

So w′(f) ≥ −3 + 1
2 + 4

3 × 2 = 1
6 > 0 by D1.

Case 3. δ(f) ≥ 5, then we have w′(f) = −3 + 4
3 × 3 = 1 > 0 by D1.

Suppose d(f) = 4. Then w(f) = −2. If δ(f) = 3, then f is a (3, 3+, 6+, 6+)-
face by assumption. We have w′(f) ≥ −2+ 1× 2 = 0 by D2. If δ(f) ≤ 4, then
f is a (4+, 4+, 4+, 4+)-face. We have w′(f) ≥ −2 + 1

2 × 4 = 0 by D2.
Suppose d(f) = 5. Then w(f) = −1.

Case 4. δ(f) = 3, then n3(f) ≤ 2 by assumption. If n3(f) = 2, then f is
a (3, 3, 6+, 6+, 6+)-face by assumption. We have w′(f) ≥ −1 + 1

3 × 3 = 0 by
D3. If n3(f) = 1, then f is a (3, 4+, 4+, 6+, 6+)-face by assumption. We have
w′(f) ≥ −1 + 1

3 × 2 + 1
5 × 2 = 1

15 > 0 by D3.

Case 5. δ(f) = 4, then we have w′(f) ≥ −1 + 1
5 × 5 = 0 by D3.

Suppose d(f) ≥ 6. Then w′(f) = w(f) ≥ 0.
From the above discussion, we can obtain

∑
x∈V (G)∪F (G) w

′(x) ≥ 0 > −12,

a contradiction. □

In the following, let us give the proof of the main theorem.

Theorem 2.2. If G is a planar graph without 6-cycles with chord, then χ′
l(G) ≤

∆(G) + 1 and χ′′
l (G) ≤ ∆(G) + 2 where ∆(G) ≥ 6.

Proof. By contradiction, let G′ and G′′ be minimal counterexamples (i.e., crit-
ical graphs) to the conclusions for χ′

l and χ′′
l respectively, and let L′ and L′′

be list assignments such that |L′(e)| = ∆+ 1 for each e ∈ E(G) and G′ is not
edge-L′-colorable, and |L′′(x)| = ∆ + 2 for each x ∈ V (G) ∪ E(G) and G′′ is
not total-L′′-colorable. By Lemma 2.1, G′ and G′′ contains an edge uv ∈ E(G)

such that min{d(u), d(v)} ≤ ⌊∆(G)+1
2 ⌋ and d(u) + d(v) ≤ max{8,∆(G) + 2}.

Let Ḡ′ = G′ − uv. Then Ḡ′ is edge-L′-colorable by assumption. For d(u) +
d(v) ≤ max{8,∆(G)+2}, there is at most ∆(G) edges which are adjacent with
uv in Ḡ′. So there is at least one color in L′(uv) which we can use to color uv.
Then G′ is edge-L′-colorable, a contradiction.

Let Ḡ′′ = G′′ − uv. Then Ḡ′′ is total-L′′-colorable by assumption. Without
loss of generality, let d(u) = min{d(u), d(v)}. Erase the color of u, then there
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is at least one color in L′′(uv) which we can use to color uv for d(u) + d(v) ≤
max{8,∆(G)+2}. For d(u) ≤ ⌊∆(G)+1

2 ⌋, then u is adjacent to at most ⌊∆(G)+1
2 ⌋

vertices or is incident to ⌊∆(G)+1
2 ⌋ edges. So there is at least one color in L′(u)

which we can use to color u. Then G′′ is total-L′′-colorable, a contradiction.
So χ′

l(G) ≤ ∆(G) + 1 and χ′′
l (G) ≤ ∆(G) + 2 □
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