• Title/Summary/Keyword: 1-Dimensional

Search Result 12,136, Processing Time 0.034 seconds

A Brief Review on 2-Dimensional Dielectric Nanosheets (이차원 유전체 나노시트의 개발 동향)

  • Yim, Haena;Choi, Ji-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.1
    • /
    • pp.1-10
    • /
    • 2022
  • Two-dimensional materials have shown a great promise for the next-generation electronic materials due to their unique optical, physical, and chemical properties that are distinct from their bulk counterparts. Their atomic-level thickness, the feature for flexible tenability, and exposed huge surface allow various approaches for high-performance nanoscale devices. Especially, this review highlights the recent progress on two-dimensional dielectric nanosheets, which are obtained by cheap and massproducible solution-based exfoliation process, accompanied by the preparation methods, various deposition methods, and the characteristics of devices using a dielectric nanosheet thin films. We also present a perspective on the advantages offered by this two-dimensional dielectric nanosheets for the upcoming future nanoelectonics.

Comparative Study of Propellant Modeling in Chamber of Interior Ballistic (강내탄도의 약실 내 추진제 모델링 비교연구)

  • Jang, Jin-Sung;Sung, Hyung-Gun;Roh, Tae-Seong;Choi, Dong-Whan
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.668-671
    • /
    • 2010
  • Comparative study on propellant modeling has been investigated using a non-dimensional method and an one-dimensional method. The propellant location in the chamber can not be described by the non-dimensional method. It is, however, possible for the one-dimensional method to describe. Therefore, the analysis of the interior ballistics according to the propellant arrangements has been performed by the one-dimensional method. The negative differential pressure in the chamber could be predicted and the necessity of the one-dimensional modeling for the analysis of the interior ballistics has been confirmed.

  • PDF

A Relative Study on the Displacement of Earth Retaining Wall by 2 and 3 Dimentional Analysis (2차원 및 3차원 해석에 의한 토류벽의 변위에 관한 비교 연구)

  • Park, Chun-Sik;Park, Hae-Chan;Kim, Jong-Hwan;Park, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.801-810
    • /
    • 2010
  • Until now, design of Earth Retaining is practiced by 2nd dimensional analysis for convenience of analysis and time saving. However, the construction field is 3rd dimension, in this study, practised the 3rd dimensional analysis which can reflect the field condition more exactly the scope of earth retaining wall, and researched about the effective and economical way of design, compared and reviewed with the results, by practising both the 2nd and 3rd dimensional analysis. existing 2nd dimension. the depth of excavation, depth of embedded and soil condition. As result, under the whole conditions, more displacement came to appear to the value as result of 3rd dimensional analysis more than the result of 2nd dimensional analysis. Accordingly, the displacement by the 2nd dimension analysis is underestimated. Moreover, results of 2nd and 3rd dimensional analysis, there is no difference at displacement, when the depth of embedded is 0.5H, 1.0H and 1.5H, but Displacement of 1.5H is smaller than 0.5H, 1.0H. That is, the bigger the depth of embedded becomes, the displacement of Earth Retaining Wall appeared smaller. The displacement of earth retaining wall according to depth of excavation appeared bigger, when the depth of excavation is increased. In the meantime, when the soil condition is different, in the 2nd dimensional analysis, the displacement appeared biggest, in case of the clay layer, but in the 3rd dimensional analysis, in the beginning of excavating, the displacement of earth retaining wall appeared bigger in case of clay layer, but as excavating is in progress, the displacement of both compound soil layer and sand layer appeared big.

  • PDF

A STUDY ON DIMENSIONAL STABILITY OF IMPRESSION MATERIALS FOLLOWING IMMERSION DISINFECTION (수종 인상재의 침지 소독이 경석고 모형의 크기 안정성에 미치는 영향에 관한 연구)

  • Song, Ki-Yong;Yang, Jae-Ho;Lee, Sun-Hyung;Chung, Hun-Young
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.37 no.4
    • /
    • pp.506-515
    • /
    • 1999
  • Dental practice can produce and spread some infectious diseases from patients to dentist, dental assistant, and dental labors. One possible method for preventing these cross-contamination is to immerse dental impression in chemical disinfectants. So for many investigators studied on the dimensional changes of dental impressions and on the surface qualities of stone casts made from impression following immersion in disinfectants. This study was proposed to evaluate some popular impression disinfectant combination from the point of dimensional stability. Impression was taken from dental arch-shaped metal model. Irreversible hydrocolloid and 3 elastomers(polyvinyl siloxane, polysulfide, polyether) were immersed in 3 disinfectants (2% glutaraldehyde, 1% povidone-iodine, 0.5% sodium hypochlorite) for 10 minutes and measured both cross-arch and anterior-posterior distance under stereo microscope to evaluate dimensional change. The results obtained were as follows: 1. Dimensional changes of irreversible hydrocolloid impression was statistically different in cross-arch and anterior-posterior distance when immersed in 2% glutaraldehyde solution and in anterior-posterior distance when immersed in 0.5% sodium hypochlorite solution from control group (p<0.05). 2. Dimensional changes of polyvinyl siloxane and polysulfide impression were not statistically different from control group (p>0.05). 3. Dimensional changes of polyether impression was statistically different in cross-arch distance when immersed in 0.5% sodium hypochlorite solution and in anterior-posterior distance when immersed in 1% povidone-iodine solution from control group (p<0.05). 4. In all cases, dimensional changes were less than 0.1% from the original dimension and concluded clinically acceptable.

  • PDF

ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS

  • Chu, Hahng-Yun;Yoo, Seung Ki
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.4
    • /
    • pp.959-970
    • /
    • 2016
  • In this paper, we generalize the stability for an n-dimensional cubic functional equation in Banach space to set-valued dynamics. Let $n{\geq}2$ be an integer. We define the n-dimensional cubic set-valued functional equation given by $$f(2{{\sum}_{i=1}^{n-1}}x_i+x_n){\oplus}f(2{{\sum}_{i=1}^{n-1}}x_i-x_n){\oplus}4{{\sum}_{i=1}^{n-1}}f(x_i)\\=16f({{\sum}_{i=1}^{n-1}}x_i){\oplus}2{{\sum}_{i=1}^{n-1}}(f(x_i+x_n){\oplus}f(x_i-x_n)).$$ We first prove that the solution of the n-dimensional cubic set-valued functional equation is actually the cubic set-valued mapping in [6]. We prove the Hyers-Ulam stability for the set-valued functional equation.

Extinction Limits of Low Strain Rate Counterflow Nonpremixed Flames in Normal Gravity (정상 중력장에서 낮은 스트레인율을 갖는 대향류 비예혼합화염의 소화한계)

  • Oh, Chang-Bo;Choi, Byung-Il;Kim, Jeong-Soo;Hamins, Anthony;Park, Jeong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.9 s.240
    • /
    • pp.997-1005
    • /
    • 2005
  • The extinction characteristics of low strain rate normal gravity (1-g) nonpremixed methane-air flames were studied numerically and experimentally. A time-dependent axisymmetric two-dimensional (2D) model considering buoyancy effects and radiative heat transfer was developed to capture the structure and extinction limits of 1-g flames. One-dimensional (1D) computations were also conducted to provide information on 0-g flames. A 3-step global reaction mechanism was used in both the 1D and 2D computations to predict the measured extinction limit and flame temperature. A specific maximum heat release rate was introduced to quantify the local flame strength and to elucidate the extinction mechanism. Overall fractional contribution by each term in the energy equation to the heat release was evaluated to investigate the multi-dimensional structure and radiative extinction of 1-g flames. Images of flames were taken for comparison with the model calculation undergoing extinction. The two-dimensional numerical model was validated by comparing flame temperature profiles and extinction limits with experiments and ID computation results. The 2D computations yielded insight into the extinction mode and flame structure of 1-g flames. Two combustion regimes depending on the extinction mode were identified. Lateral heat loss effects and multi-dimensional flame structure were also found. At low strain rates of 1-g flame ('Regime A'), the flame is extinguished from the weak outer flame edge, which is attributed to multi-dimensional flame structure and flow field. At high strain rates, ('Regime B'), the flame extinction initiates near the flame centerline due to an increased diluent concentration in reaction zone, which is the same as the extinction mode of 1D flame. These two extinction modes could be clearly explained with the specific maximum heat release rate.

Design of Key Sequence Generators Based on Symmetric 1-D 5-Neighborhood CA (대칭 1차원 5-이웃 CA 기반의 키 수열 생성기 설계)

  • Choi, Un-Sook;Kim, Han-Doo;Kang, Sung-Won;Cho, Sung-Jin
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.533-540
    • /
    • 2021
  • To evaluate the performance of a system, one-dimensional 3-neighborhood cellular automata(CA) based pseudo-random generators are widely used in many fields. Although two-dimensional CA and one-dimensional 5-neighborhood CA have been applied for more effective key sequence generation, designing symmetric one-dimensional 5-neighborhood CA corresponding to a given primitive polynomial is a very challenging problem. To solve this problem, studies on one-dimensional 5-neighborhood CA synthesis, such as synthesis method using recurrence relation of characteristic polynomials and synthesis method using Krylov matrix, were conducted. However, there was still a problem with solving nonlinear equations. To solve this problem, a symmetric one-dimensional 5-neighborhood CA synthesis method using a transition matrix of 90/150 CA and a block matrix has recently been proposed. In this paper, we detail the theoretical process of the proposed algorithm and use it to obtain symmetric one-dimensional 5-neighborhood CA corresponding to high-order primitive polynomials.

N-Dimensional sine and cosine functions

  • Kim, Young Hee;Kim, Hee Sik
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.1-7
    • /
    • 1992
  • We introduce n-dimensional sine and cosine functions which are generalization of the usual sine and cosine functions. We establish the property that n-dimensional sine and cosine functions have.

  • PDF

ON THE ALGEBRA OF 3-DIMENSIONAL ES-MANIFOLD

  • Hwang, In Ho
    • Korean Journal of Mathematics
    • /
    • v.22 no.1
    • /
    • pp.207-216
    • /
    • 2014
  • The manifold $^*g-ESX_n$ is a generalized n-dimensional Riemannian manifold on which the differential geometric structure is imposed by the unified field tensor $^*g^{{\lambda}{\nu}}$ through the ES-connection which is both Einstein and semi-symmetric. The purpose of the present paper is to study the algebraic geometric structures of 3-dimensional $^*g-ESX_3$. Particularly, in 3-dimensional $^*g-ESX_3$, we derive a new set of powerful recurrence relations in the first class.