Browse > Article
http://dx.doi.org/10.4134/BKMS.b140767

ON CHARACTERIZATIONS OF SET-VALUED DYNAMICS  

Chu, Hahng-Yun (Department of Mathematics Chungnam National University)
Yoo, Seung Ki (Department of Mathematics Chungnam National University)
Publication Information
Bulletin of the Korean Mathematical Society / v.53, no.4, 2016 , pp. 959-970 More about this Journal
Abstract
In this paper, we generalize the stability for an n-dimensional cubic functional equation in Banach space to set-valued dynamics. Let $n{\geq}2$ be an integer. We define the n-dimensional cubic set-valued functional equation given by $$f(2{{\sum}_{i=1}^{n-1}}x_i+x_n){\oplus}f(2{{\sum}_{i=1}^{n-1}}x_i-x_n){\oplus}4{{\sum}_{i=1}^{n-1}}f(x_i)\\=16f({{\sum}_{i=1}^{n-1}}x_i){\oplus}2{{\sum}_{i=1}^{n-1}}(f(x_i+x_n){\oplus}f(x_i-x_n)).$$ We first prove that the solution of the n-dimensional cubic set-valued functional equation is actually the cubic set-valued mapping in [6]. We prove the Hyers-Ulam stability for the set-valued functional equation.
Keywords
Hyers-Ulam stability; n-dimensional cubic set-valued functional equation;
Citations & Related Records
연도 인용수 순위
  • Reference
1 T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan 2 (1950), 64-66.
2 J. Brzdek, Stability of additivity and fixed point methods, Fixed Point Theory Appl. 2013 (2013), 285, 9 pp.   DOI
3 J. Brzdek, Note on stability of the Cauchy equation - an answer to a problem of Th. M. Rassias, Carpathian J. Math. 30 (2014), no. 1, 47-54.
4 J. Brzdek and M. Piszczek, Selections of set-valued maps satisfying some inclusions and the Hyers-Ulam stability, Handbook of functional equations, 83-100, Springer Optim. Appl. 96, Springer, New York, 2014.
5 C. Castaing and M. Valadier, Convex analysis and measurable multifunctions, Lec. Notes in Math., 580, Springer, Berlin, 1977.
6 H.-Y. Chu, A. Kim, and S. K. Yoo, On the stability of the generalized cubic set-valued functional equation, Appl. Math. Lett. 37 (2014), 7-14.   DOI
7 P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436.   DOI
8 D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. 27 (1941), 222-224.   DOI
9 K.-W. Jun and H.-M. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 267-278.
10 Y.-S. Jung and I.-S. Chang, The stability of a cubic type functional equation with the fixed point alternative, J. Math. Anal. Appl. 306 (2005), no. 2, 752-760.   DOI
11 S.-M. Jung and Z.-H. Lee, A fixed point approach to the stability of quadratic functional equation with involution, Fixed Point Theory Appl. 2008 (2008), Article ID 732086, 11 pages.
12 D. S. Kang and H.-Y. Chu, Stability problem of Hyers-Ulam-Rassias for generalized forms of cubic functional equation, Acta Math. Sin. (Eng;. Ser.) 24 (2008), no. 3, 491-502.   DOI
13 H. A. Kenary, H. Rezaei, Y. Gheisari, and C. Park, On the stability of set-valued functional equations with the fixed point alternative, Fixed Point Theory Appl. 2012 (2012), 81, 17 pp.   DOI
14 G. Lu and C. Park, Hyers-Ulam stability of additive set-valued functional euqations, Appl. Math. Lett. 24 (2011), no. 8, 1312-1316.   DOI
15 B. Margolis and J. B. Diaz, A fixed point theorem of the alternative for contractions on a generalized complete metric space, Bull. Amer. Math. Soc. 126 (1968), 305-309.
16 C. Park, D. O'Regan, and R. Saadati, Stabiltiy of some set-valued functional equations, Appl. Math. Lett. 24 (2011), 1910-1914.   DOI
17 M. Piszczek, The properties of functional inclusions and Hyers-Ulam stability, Aequationes Math. 85 (2013), no. 1-2, 111-118.   DOI
18 M. Piszczek, On selections of set-valued inclusions in a single variable with applications to several variables, Results Math. 64 (2013), no. 1-2, 1-12.   DOI
19 Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300.   DOI
20 Th.M. Rassias(Ed.), Handbook of Functional Equations, Springer Optim. Appl. 96, Springer, New York, 2014.
21 H. Radstrom, An embedding theorem for spaces of convex sets, Proc. Amer. Math. Soc. 3 (1952), 165-169.   DOI
22 S. M. Ulam, A Collection of the Mathematical Problems, Interscience Publ. New York, 1960.