N-Dimensional sine and cosine functions

Young Hee Kim and Hee Sik Kim*

Abstract

We introduce n-dimensional sine and cosine functions which are generalization of the usual sine and cosine functions. We establish the property that n-dimensional sine and cosine functions have.

1. Introduction

S. T. Lin and Y. Lin [1] established the n-dimensional Pythagorian theorem. We shall establish generalized sine and cosine functions $\sin (n) x$ and $\cos (n) x$. If $n=2, \sin (2) x=\sin x$ and $\cos (2) x=\cos x$, the usual sine and cosine functions. We list some properties of n dimensional sine and cosine functions in the section 4 . We have graphs of n-dimensional sine and cosine functions for $n=2,3,5,10,20,30$, 40, 50, 100, 200.

2. Definitions

In this section, we define simplexes, a k-simplex or a k-dimensional right triangle, the content of a simplex, and a sine (or a generalized sine) function of ($n-1$) variables in an n-dimensional Euclidean space. Let R be the real line, and let $R^{n}=\left\{\left(x_{1}, \ldots, x_{n}\right): x_{i} \in R\right\}$ be the n-dimensional Euclidean space.

Definition 1. A set $S=\left\{A_{i} \in R^{m}: i=0,1,2, \ldots, m\right\}$ is said to be in general position if the set of vectors $A_{1}-A_{0}, A_{2}-A_{0}, \ldots, A_{m}-A_{0}$

[^0]is linearly independent. We define a simplex $\triangle\left[A_{0}, A_{1}, \ldots, A_{m}\right]=$ $\left\{x=\sum a_{i} A_{i}: \sum a_{i}=1\right.$, and $\left.a_{i} \geq 0\right\}$, assuming that S is in general position. We call it the simplex spanned by the set S, and denoted it by often S^{m} instead of $\triangle\left[A_{0}, \ldots, A_{m}\right], A_{i}$ is called a vertex of the simplex S^{m}, and m is the dimension of it.

Definition 2. Let S^{m} be a simplex of dimension m. A 1 -simple $\Delta\left[A_{i}, A_{j}\right]$ is called an edge of the simplex. If there is a vertex $e(0)$ (in $S)$ of S^{m} such that $\Delta\left[e(0), A_{i}\right]$ and $\triangle\left[e(0), A_{j}\right]$ are orthogonal $(i \neq j$, $\left.A_{i} \neq e(0) \neq A_{j}\right)$, then we say that S^{m} is a right simplex (or an m-dimensional right triangle).

DEFINITION 3. Let $S^{m}=\triangle\left[A_{0}, A_{1}, \ldots, A_{m}\right]$ be an m-simplex. An ($m-1$)-simplex $\triangle\left[A_{0}, A_{1}, \ldots,\left(A_{i}\right), \ldots, A_{m}\right]$ is a simplex obtained from S^{m} by deleting A_{i}. We define the content of $S^{m}(m=3)$ as the volume of S^{m} and it will be denoted by $\left|S^{m}\right|$. The content $\left|\triangle\left[A_{1}, A_{2}\right]\right|$ of the 1 -simplex $\triangle\left[A_{1}, A_{2}\right]$ is the length of the simplex $\triangle\left[A_{1}, A_{2}\right]$, $\left|\triangle\left[A_{1}, A_{2}, A_{3}\right]\right|$ is the area of the 2 -simplex, and $\left|\triangle\left[A_{1}, A_{2}, A_{3}, A_{4}\right]\right|$ is defined as the volume of it. Similarly, we define the content of an $(m-1)$-simplex $\Delta\left[A_{0}, A_{1}, \ldots,\left(A_{i}\right), \ldots, A_{m}\right]=T$ as the volume of T and we denote the content of T by $|T|$ (see [2], for the contents).

3. N-dimensional sine function

In this section, we define a generalized sine function $\sin (n) x,(n \geq$ 3) in Definition 4.

DEFINITION 4. In R^{n}, we define $e(0)=(0,0, \ldots, 0) \in R^{n}, e(1)=$ $(1,0,0, \ldots, 0), e(2)=(0,1,0,0, \ldots, 0), \ldots, e(n)=(0,0, \ldots, 0,1)$. Let a_{i} be a positive number $(i=1,2, \ldots, n)$. Define $A_{i}=a_{i} e(i)$. For instance $A_{1}=\left(a_{1}, 0,0, \ldots, 0\right)$. Let $e(0)=0$. We define an angle $\alpha_{i j}=\angle O A_{i} A_{j}$ for the triangle $\triangle\left[O, A_{i}, A_{j}\right]$.

We define a generalized sine function of $(n-1)$ variables as follows:

$$
\begin{aligned}
\sin \left(\alpha_{i 1}, \alpha_{i 2}, \ldots,\left(\alpha_{i i}\right), \ldots, \alpha_{i n}\right) & =\left(\alpha_{i}\right)=\sin \left(\alpha_{i}\right) \\
& =\frac{\left|\triangle\left[O, A_{1}, \ldots,\left(A_{i}\right), \ldots, A_{n}\right]\right|}{\left|\triangle\left[A_{1}, A_{2}, \ldots, A_{n}\right]\right|} .
\end{aligned}
$$

If $\alpha_{i 1}=\alpha_{i 2}=\cdots=\alpha_{i n}=x$, then we define $\sin \left(\alpha_{i}\right)$ as $\sin (n) x=$ $\sin (x, x, \ldots, x)=\sin \left(\alpha_{i}\right)$. We shall show that $\sin (n) x=\sin x /[1+$ $\left.(n-2) \cos ^{2} x\right]^{\frac{1}{2}}$ in Proposition 1. We need a symmetric matrix U_{n} of order $(n+1)$.

Definition 5. We define a symmetric matrix $U_{n}=\left(u_{i j}\right)$ as follows:

$$
\begin{aligned}
u_{i j} & =0, & & \text { if } i=j ; \\
& =1, & & \text { if } i=1, j=2,3, \ldots, n+1 ; \\
& =1, & & \text { if } j=1, i=2,3, \ldots, n+1 ; \\
& =\csc ^{2} \alpha, & & \text { if } i=2, j=3,4, \ldots, n+1 ; \\
& =\csc ^{2} \alpha, & & \text { if } j=2, i=3,4, \ldots, n=1 ; \\
& =2, & & \text { otherwise }
\end{aligned}
$$

We prove the following lemma.

Lemma 1. The determinant $\operatorname{det}(U)$ of the matrix $U=U_{n}$ is equal to $\operatorname{det}(U)=\left[(-1)^{n} 2^{n-1}\right]\left[\left(1+(n-2) \cos ^{2} \alpha\right) / \sin ^{2} \alpha\right]$.

Proof. We can see that

$$
\begin{aligned}
& \operatorname{det}(U)=\left|\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 0 & \csc ^{2} \alpha & \csc ^{2} \alpha & \csc ^{2} \alpha & \ldots & \csc ^{2} \alpha \\
1 & \csc ^{2} \alpha & 0 & 2 & 2 & \ldots & 2 \\
1 & \csc ^{2} \alpha & 2 & 0 & 2 & \ldots & 2 \\
1 & \csc ^{2} \alpha & 2 & 2 & 0 & \ldots & 2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & \csc ^{2} \alpha & 2 & 2 & 2 & \ldots & 0
\end{array}\right| \\
& =\left|\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & \ldots & 1 \\
1 & -2 \csc ^{2} \alpha & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & 2 & 2 & \ldots & 2 \\
1 & 0 & 2 & 0 & 2 & \ldots & 2 \\
1 & 0 & 2 & 2 & 0 & \ldots & 2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 2 & 2 & 2 & \ldots & 0
\end{array}\right| \\
& =\left|\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & \ldots & 1 \\
1 & 2-2 \csc ^{2} \alpha & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & -2 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & -2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & 0 & 0 & \ldots & -2
\end{array}\right| \\
& =\left|\begin{array}{ccccccc}
(n-1) / 2 & 1 & 0 & 0 & 0 & \ldots & 0 \\
1 & 2\left(1-\csc ^{2} \alpha\right) & 0 & 0 & 0 & \ldots & 0 \\
1 & 0 & -2 & 0 & 0 & \ldots & 0 \\
1 & 0 & 0 & -2 & 0 & \ldots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \ddots & \vdots \\
1 & 0 & 0 & 0 & 0 & \ldots & -2
\end{array}\right|
\end{aligned}
$$

$$
\begin{aligned}
& =\left|\begin{array}{cc}
(n-1) / 2 & 1 \\
1 & 2\left(1-\csc ^{2} \alpha\right)
\end{array}\right|\left|\begin{array}{ccccc}
-2 & 0 & 0 & \ldots & 0 \\
0 & -2 & 0 & \ldots & 0 \\
0 & 0 & -2 & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -2
\end{array}\right| \\
& =\left[(-1)^{n} 2^{n-1}\right]\left[\left(1+(n-2) \cos ^{2} \alpha\right) / \sin ^{2} \alpha\right] .
\end{aligned}
$$

This proves the lemma.
Lemma 2. The content $\left|\triangle\left[A_{1}, A_{2}, \ldots, A_{n}\right]\right|$ of an $(n-1)$-simplex $\Delta\left[A_{1}, A_{2}, \ldots, A_{n}\right]$ is obtained by the following [1]: $\operatorname{det}(V)$ $=(-1)^{n} 2^{n-1}[(n-1)!]^{2}\left|\triangle\left[A_{1}, A_{2}, \ldots, A_{n}\right]\right|^{2}$, where $V=\left(v_{i j}\right)$ is a matrix of order $(n+1)$ defined as follows:

$$
\begin{aligned}
v_{i j} & =0, & & \text { if } i=j ; \\
& =1, & & \text { if } i=1, j=2,3, \ldots, n+1 ; \\
& =1, & & \text { if } j=1, i=2,3, \ldots, n+1 ; \\
& =\left|\triangle\left[A_{i}, A_{j}\right]\right|^{2}, & & \text { if } i \neq j, i \neq 1, \text { and } j \neq 1
\end{aligned}
$$

Lemma 3. If $\Delta\left[O, A_{1}, A_{2}, \ldots, A_{s}\right]$ is a right s-simplex ($\Delta\left[O, A_{i}\right]$ and $\Delta\left[O, A_{j}\right]$ are orthogonal), then, the content of the s-simplex is given by: $s!\left|\Delta\left[O, A_{1}, A_{2}, \ldots, A_{s}\right]\right|=\prod_{i=1}^{s}\left|\Delta\left[O, A_{i}\right]\right|$. We prove the following proposition.

Proposition 1. In $R^{n}, \sin (n) \alpha=\sin (\alpha, \alpha, \ldots, \alpha)=\sin \left(\alpha_{i}\right)=$ $(\sin \alpha) /\left[1+(n-2) \cos ^{2} \alpha\right]^{1 / 2}$, where α is an angle such that $0<\alpha<$ $\pi / 2$.

Proof. Without loss of generality, we assume that $\alpha=\alpha_{12}=$ $\alpha_{13}=\cdots=\alpha_{1 n}$. We define $A=\cot \alpha e(1)=(\cot \alpha, 0,0, \ldots, 0)$.

We let $e(0)=0$. We can see that $\angle O A e(k)=\alpha$ for the triangle $\Delta[O, A, e(k)], k=2,3, \ldots, n$. Thus

$$
\begin{aligned}
\sin \left(\alpha_{12}, \alpha_{13}, \ldots, \alpha_{1 n}\right) & =\sin (\alpha, \alpha, \ldots, \alpha)=\sin (n) \alpha \\
& =\frac{|\triangle[O, e(2), e(3), \ldots, e(n)]|}{|\triangle[A, e(2), e(3), \ldots, e(n)]|} .
\end{aligned}
$$

We see that

$$
\begin{aligned}
& |\Delta[O, e(2), e(3), \ldots, e(n)]|=(n-1)!, \text { and }|\Delta[A, e(2), \ldots, e(n)]| \\
& =\left(\operatorname{det}\left(U_{n}\right) /\left[(-1)^{n} 2^{n-1}((n-1)!)^{2}\right]\right)^{1 / 2} .
\end{aligned}
$$

Now we apply Lemma 1 and we obtain that $\sin (x, x, \ldots, x)=$ $\sin x /\left(1+(n-2) \cos ^{2} x\right)^{1 / 2}$. This proves Proposition 1 .

Definition 6. From Proposition 1, we define the n-dimensional sine function $\sin (n)(x)=\sin (x, x, \ldots, x)=\sin x /\left(1+(n-2) \cos ^{2} x\right)^{1 / 2}$, for $x \in R$. We define the n-dimensional cosine function $\cos (n) x$ as $\sin (n)(\pi / 2-x)$, and a tangent function $\tan (n) x$ as $\tan (n) x=$ $\sin (n) x / \cos (n) x$. (We may call $\sin (n) x$ the n-dimensional pure sine function.)

Referring to Definition 4, we have the following:
Proposition 2. In $R^{n},\left[\sin \left(\alpha_{1}\right)\right]^{2}+\left[\sin \left(\alpha_{2}\right)\right]^{2}+\cdots+\left[\sin \left(\alpha_{n}\right)\right]^{2}=1$.
The proof of Proposition follows from the n-dimensional Pythagorian theorem in [1].

4. Note

In this section, we list some elementary properties from Proposition 1. We could have graphs of $\sin (n) x$ and $\cos (n) x$, for $n=2,3,5$, $10,20,30,40,50,100$, and 200.

Note.

(1) $\sin (n)(\pi / 4)=(n)^{1 / 2}, n \geq 2$.
(2) $\sin (n)(0)=0, \sin (n)(\pi / 2)=1$.
(3) $\int_{0}^{\pi / 2} \sin (n) x d x=\ln \left[(n-2)^{1 / 2}+(n-1)^{1 / 2}\right] /(n-2)^{1 / 2}$.
(4) $\lim _{n \rightarrow \infty} \int_{0}^{\pi / 2} \sin (n) x d x=0$.

References

[1] Shwu-Yeng T. Lin and You-Feng Lin, The n-dimensional Pythagorian theorem, Linear and Multilinear Algebras 26 (1990), 9-13.
[2] D.M.Y. Sommerville, An introduction to the Geometry of n-Dimensions, Dover Publications, Inc., New York, 1958, pp. 118-140.

Department of Mathematics
Chungbook National University
Cheongju, 360-763, Korea

[^0]: *Partially supported by Chungbuk National University Research Foundation.
 Received by the editors on January 16, 1992.
 1980 Mathematics subject classifications: Primary 51M05, $25 B 35$.

