JOURNAL OF THE CHUNGCHEONG MATHEMATICAL SOCIETY Volume 5, June 1992

N-Dimensional sine and cosine functions

YOUNG HEE KIM AND HEE SIK KIM*

ABSTRACT. We introduce n-dimensional sine and cosine functions which are generalization of the usual sine and cosine functions. We establish the property that n-dimensional sine and cosine functions have.

1. Introduction

S. T. Lin and Y. Lin [1] established the *n*-dimensional Pythagorian theorem. We shall establish generalized sine and cosine functions $\sin(n)x$ and $\cos(n)x$. If n = 2, $\sin(2)x = \sin x$ and $\cos(2)x = \cos x$, the usual sine and cosine functions. We list some properties of *n*-dimensional sine and cosine functions in the section 4. We have graphs of *n*-dimensional sine and cosine functions for n = 2, 3, 5, 10, 20, 30, 40, 50, 100, 200.

2. Definitions

In this section, we define simplexes, a k-simplex or a k-dimensional right triangle, the content of a simplex, and a sine (or a generalized sine) function of (n-1) variables in an n-dimensional Euclidean space. Let R be the real line, and let $R^n = \{(x_1, \ldots, x_n) : x_i \in R\}$ be the n-dimensional Euclidean space.

DEFINITION 1. A set $S = \{A_i \in \mathbb{R}^m : i = 0, 1, 2, ..., m\}$ is said to be in general position if the set of vectors $A_1 - A_0, A_2 - A_0, ..., A_m - A_0$

*Partially supported by Chungbuk National University Research Foundation. Received by the editors on January 16, 1992.

¹⁹⁸⁰ Mathematics subject classifications: Primary 51M05, 25B35.

is linearly independent. We define a simplex $\Delta[A_0, A_1, \ldots, A_m] = \{x = \sum a_i A_i : \sum a_i = 1, \text{ and } a_i \geq 0\}$, assuming that S is in general position. We call it the simplex spanned by the set S, and denoted it by often S^m instead of $\Delta[A_0, \ldots, A_m]$, A_i is called a vertex of the simplex S^m , and m is the dimension of it.

DEFINITION 2. Let S^m be a simplex of dimension m. A 1-simple $\triangle[A_i, A_j]$ is called an edge of the simplex. If there is a vertex e(0) (in S) of S^m such that $\triangle[e(0), A_i]$ and $\triangle[e(0), A_j]$ are orthogonal $(i \neq j, A_i \neq e(0) \neq A_j)$, then we say that S^m is a right simplex (or an m-dimensional right triangle).

DEFINITION 3. Let $S^m = \Delta[A_0, A_1, \ldots, A_m]$ be an *m*-simplex. An (m-1)-simplex $\Delta[A_0, A_1, \ldots, (A_i), \ldots, A_m]$ is a simplex obtained from S^m by deleting A_i . We define the *content* of $S^m(m = 3)$ as the volume of S^m and it will be denoted by $|S^m|$. The content $|\Delta[A_1, A_2]|$ of the 1-simplex $\Delta[A_1, A_2]$ is the length of the simplex $\Delta[A_1, A_2]$, $|\Delta[A_1, A_2, A_3]|$ is the area of the 2-simplex, and $|\Delta[A_1, A_2, A_3, A_4]|$ is defined as the volume of it. Similarly, we define the *content* of an (m-1)-simplex $\Delta[A_0, A_1, \ldots, (A_i), \ldots, A_m] = T$ as the volume of T and we denote the content of T by |T| (see [2], for the contents).

3. N-dimensional sine function

In this section, we define a generalized sine function $\sin(n)x$, $(n \ge 3)$ in Definition 4.

DEFINITION 4. In \mathbb{R}^n , we define $e(0) = (0, 0, ..., 0) \in \mathbb{R}^n$, e(1) = (1, 0, 0, ..., 0), e(2) = (0, 1, 0, 0, ..., 0), ..., e(n) = (0, 0, ..., 0, 1). Let a_i be a positive number (i = 1, 2, ..., n). Define $A_i = a_i e(i)$. For instance $A_1 = (a_1, 0, 0, ..., 0)$. Let e(0) = 0. We define an angle $\alpha_{ij} = \angle OA_i A_j$ for the triangle $\triangle[O, A_i, A_j]$.

We define a generalized sine function of (n-1) variables as follows:

$$\sin(\alpha_{i1}, \alpha_{i2}, \dots, (\alpha_{ii}), \dots, \alpha_{in}) = (\alpha_i) = \sin(\alpha_i)$$
$$= \frac{|\Delta[O, A_1, \dots, (A_i), \dots, A_n]|}{|\Delta[A_1, A_2, \dots, A_n]|}$$

If $\alpha_{i1} = \alpha_{i2} = \cdots = \alpha_{in} = x$, then we define $\sin(\alpha_i)$ as $\sin(n)x = \sin(x, x, \ldots, x) = \sin(\alpha_i)$. We shall show that $\sin(n)x = \frac{\sin x}{1 + (n-2)\cos^2 x}$ in Proposition 1. We need a symmetric matrix U_n of order (n+1).

DEFINITION 5. We define a symmetric matrix $U_n = (u_{ij})$ as follows:

$$\begin{array}{ll} u_{ij} = 0, & \text{if } i = j; \\ = 1, & \text{if } i = 1, j = 2, 3, \dots, n+1; \\ = 1, & \text{if } j = 1, i = 2, 3, \dots, n+1; \\ = \csc^2 \alpha, & \text{if } i = 2, j = 3, 4, \dots, n+1; \\ = \csc^2 \alpha, & \text{if } j = 2, i = 3, 4, \dots, n=1; \\ = 2, & \text{otherwise} \end{array}$$

We prove the following lemma.

LEMMA 1. The determinant det(U) of the matrix $U = U_n$ is equal to det(U) = $[(-1)^n 2^{n-1}][(1 + (n-2)\cos^2 \alpha)/\sin^2 \alpha].$ **PROOF.** We can see that

	0	1	1		1	-	1	•••	1	
	1	0	$\csc^2 \alpha$	ĊS	$c^2 \alpha$	csc	$c^2 \alpha$	•••	\csc^2	α
	1	$\csc^2 lpha$	0		2	6	2	•••	2	
$\det(U) =$	1	$\csc^2 lpha$	2		0		2	•••	2	
	1	$\csc^2 lpha$	2		2	(0	•••	2	
	:		•		:		•	٠.	:	
	1	$\csc^2 \alpha$	2		2		2	•••	0	
	0	1	1	1	1.	••	1			
	1	$-2 \csc^2$	α 0	0	0.	•••	0			
	1	0	0	2	2 .	••	2			
=	1	0	2	0	2 .	••	2			
	1	0	2	2	0.	•••	2			
	÷	:	:	:	: •	•.	:			
	1	0	2	2	2.	••	0			
	0	1		1	1	1	• • •	1		
	1	$2-2 \mathrm{cs}$	$c^2 \alpha$	0	0	0	•••	0		
	1	0	-	-2	0	0	• • •	0		
. =	1	• 0 *		0	-2	0	•••	0		
	:	:		:	:	÷	٠.	:		
	1	0		0	0	0		-2		
	(n	(-1)/2		1		0	0	0	•••	0
		1	2(1 -	csc ²	$^{2}\alpha)$	0	0	0	• • •	0
=		1		0		-2	0	0	•••	0
		1		0		0	-2	0	•••	0
		:		:		÷	:	÷	•••	÷
		1		0		0	0	0	• • •	-2

4

$$= \begin{vmatrix} (n-1)/2 & 1 \\ 1 & 2(1-\csc^{2}\alpha) \end{vmatrix} \begin{vmatrix} -2 & 0 & 0 & \dots & 0 \\ 0 & -2 & 0 & \dots & 0 \\ 0 & 0 & -2 & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & \dots & -2 \end{vmatrix}$$
$$= [(-1)^{n} 2^{n-1}][(1+(n-2)\cos^{2}\alpha)/\sin^{2}\alpha].$$

This proves the lemma.

LEMMA 2. The content $|\triangle [A_1, A_2, \ldots, A_n]|$ of an (n-1)-simplex $\triangle [A_1, A_2, \ldots, A_n]$ is obtained by the following [1]: det(V)= $(-1)^n 2^{n-1} [(n-1)!]^2 |\triangle [A_1, A_2, \ldots, A_n]|^2$, where $V = (v_{ij})$ is a matrix of order (n+1) defined as follows:

$$\begin{aligned} v_{ij} &= 0, & \text{if } i = j; \\ &= 1, & \text{if } i = 1, j = 2, 3, \dots, n+1; \\ &= 1, & \text{if } j = 1, i = 2, 3, \dots, n+1; \\ &= |\bigtriangleup [A_i, A_j]|^2, & \text{if } i \neq j, i \neq 1, \text{ and } j \neq 1 \end{aligned}$$

LEMMA 3. If $\triangle[O, A_1, A_2, \ldots, A_s]$ is a right s-simplex $(\triangle[O, A_i])$ and $\triangle[O, A_j]$ are orthogonal), then, the content of the s-simplex is given by: $s! |\triangle[O, A_1, A_2, \ldots, A_s]| = \prod_{i=1}^{s} |\triangle[O, A_i]|$. We prove the following proposition.

PROPOSITION 1. In \mathbb{R}^n , $\sin(n)\alpha = \sin(\alpha, \alpha, \dots, \alpha) = \sin(\alpha_i) = (\sin \alpha)/[1 + (n-2)\cos^2 \alpha]^{1/2}$, where α is an angle such that $0 < \alpha < \pi/2$.

PROOF. Without loss of generality, we assume that $\alpha = \alpha_{12} = \alpha_{13} = \cdots = \alpha_{1n}$. We define $A = \cot \alpha e(1) = (\cot \alpha, 0, 0, \dots, 0)$.

We let e(0) = 0. We can see that $\angle OAe(k) = \alpha$ for the triangle $\triangle[O, A, e(k)], k = 2, 3, ..., n$. Thus

$$\sin(\alpha_{12}, \alpha_{13}, \dots, \alpha_{1n}) = \sin(\alpha, \alpha, \dots, \alpha) = \sin(n)\alpha$$
$$= \frac{|\triangle [O, e(2), e(3), \dots, e(n)]|}{|\triangle [A, e(2), e(3), \dots, e(n)]|}.$$

We see that

$$|\Delta[O, e(2), e(3), \dots, e(n)]| = (n-1)!, \text{ and } |\Delta[A, e(2), \dots, e(n)]|$$

= $(\det(U_n)/[(-1)^n 2^{n-1}((n-1)!)^2])^{1/2}.$

Now we apply Lemma 1 and we obtain that $sin(x, x, ..., x) = sin x/(1 + (n-2)cos^2 x)^{1/2}$. This proves Proposition 1.

DEFINITION 6. From Proposition 1, we define the *n*-dimensional sine function $\sin(n)(x) = \sin(x, x, ..., x) = \sin x/(1+(n-2)\cos^2 x)^{1/2}$, for $x \in R$. We define the *n*-dimensional cosine function $\cos(n)x$ as $\sin(n)(\pi/2 - x)$, and a tangent function $\tan(n)x$ as $\tan(n)x = \sin(n)x/\cos(n)x$. (We may call $\sin(n)x$ the *n*-dimensional pure sine function.)

Referring to Definition 4, we have the following:

PROPOSITION 2. In \mathbb{R}^n , $[\sin(\alpha_1)]^2 + [\sin(\alpha_2)]^2 + \cdots + [\sin(\alpha_n)]^2 = 1$.

The proof of Proposition follows from the n-dimensional Pythagorian theorem in [1].

4. Note

In this section, we list some elementary properties from Proposition 1. We could have graphs of sin(n)x and cos(n)x, for n = 2, 3, 5, 10, 20, 30, 40, 50, 100, and 200. NOTE.

(1)
$$\sin(n)(\pi/4) = (n)^{1/2}, n \ge 2.$$

- (2) $\sin(n)(0) = 0$, $\sin(n)(\pi/2) = 1$.
- (3) $\int_0^{\pi/2} \sin(n)x \, dx = \ln[(n-2)^{1/2} + (n-1)^{1/2}]/(n-2)^{1/2}.$ (4) $\lim_{n \to \infty} \int_0^{\pi/2} \sin(n)x \, dx = 0.$

REFERENCES

- [1] Shwu-Yeng T. Lin and You-Feng Lin, The n-dimensional Pythagorian theorem, Linear and Multilinear Algebras 26 (1990), 9-13.
- [2] D.M.Y. Sommerville, An introduction to the Geometry of n-Dimensions, Dover Publications, Inc., New York, 1958, pp. 118-140.

Department of Mathematics Chungbook National University Cheongju, 360-763, Korea