• 제목/요약/키워드: 1 g shaking table

검색결과 108건 처리시간 0.026초

Prediction of dynamic behavior of full-scale slope based on the reduced scale 1 g shaking table test

  • Jin, Yong;Kim, Daehyeon;Jeong, Sugeun;Park, Kyungho
    • Geomechanics and Engineering
    • /
    • 제31권4호
    • /
    • pp.423-437
    • /
    • 2022
  • The objective of the study is to evaluate the feasibility of the dynamic behavior of slope through both 1 g shaking table test and numerical analysis. Accelerometers were installed in the slope model with different types of seismic waves. The numerical analysis (ABAQUS and DEEPSOIL) was used to simulate 1 g shaking table test at infinite boundary. Similar Acceleration-time history, Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) were obtained, which verified the feasibility of modeling using ABAQUS and DEEPSOIL under the same size. The influence of the size (1, 2, 5, 10 and 20 times larger than that used in the 1 g shaking table test) of the model used in the numerical analysis were extensively investigated. According to the similitude law, ABAQUS was used to analyze the dynamic behavior of large-scale slope model. The 5% Damping Spectral acceleration (SA) and Spectral acceleration amplification factor (Fa) at the same proportional positions were compared. Based on the comparison of numerical analyses and 1 g shaking table tests, it was found that the 1 g shaking table test result can be utilized to predict the dynamic behavior of the real scale slope through numerical analysis.

1/5 축소 비연성 3층 철근콘크리트 골조의 진동대 실험 (Shaking Table Tests of A 1/5-Scale 3-Story Nonductile Reinforced Concrete Frame)

  • 이한선;우성우;허윤섭;고동우;강귀용;김상대;정하선;송진규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1997년도 가을 학술발표회 논문집
    • /
    • pp.581-586
    • /
    • 1997
  • The objective of this study is to investigate the behavior of a 1/5-scale 3-story nonductile reinforced concrete frame subjected to earthquake excitation. For this purpose, Taft N21E earthquake accelerogram was simulated by using 3m${\times}$5m shaking table. When the input acceleration is compared to that of output, it can be found that simulation of shaking table is excellent. From the results of test with Taft N21E earthquake accelerogram adjusted to peak ground acceleration(PGA) 0.06g and 0.12g(maximum acceleration in korea seismic code) the model responded in elastic behavior and it is found that the existing building in our country are safe against the levels of PGA 0.06g and 0.12g.

  • PDF

Effects of excess pore pressure dissipation on liquefaction-induced ground deformation in 1-g shaking table test

  • Wang, B.;Zen, K.;Chen, G.Q.;Kasama, K.
    • Geomechanics and Engineering
    • /
    • 제4권2호
    • /
    • pp.91-103
    • /
    • 2012
  • Focusing on the effect of excess pore pressure dissipation on liquefaction-induced ground deformation, a series of 1-g shaking table tests were conducted in a rigid soil container by use of saturated Toyoura sand, the relative density of which was 20-60%. These tests were subjected to the sinusoidal base shaking with step increased accelerations: 100, 200, 300 and 400 Gals for 2-4 seconds. Shaking table tests were done using either water or polymer fluid with more viscous than water, thus varying the sand permeability of model tests. Excess pore pressures, accelerations, settlements and lateral deformations were measured in each test. Test results are presented in this paper and the effect of sand permeability on liquefaction and liquefaction-induced ground deformation was discussed in detail.

Experimental identification of the six DOF C.G.S., Algeria, shaking table system

  • Airouche, Abdelhalim;Bechtoula, Hakim;Aknouche, Hassan;Thoen, Bradford K.;Benouar, Djillali
    • Smart Structures and Systems
    • /
    • 제13권1호
    • /
    • pp.137-154
    • /
    • 2014
  • Servohydraulic shaking tables are being increasingly used in the field of earthquake engineering. They play a critical role in the advancement of the research state and remain one of the valuable tools for seismic testing. Recently, the National Earthquake Engineering Research Center, CGS, has acquired a 6.1m x 6.1 m shaking table system which has a six degree-of-freedom testing capability. The maximum specimen mass that can be tested on the shaking table is 60 t. This facility is designed specially for testing a complete civil engineering structures, substructures and structural elements up to collapse or ultimate limit states. It can also be used for qualification testing of industrial equipments. The current paper presents the main findings of the experimental shake-down characterization testing of the CGS shaking table. The test program carried out in this study included random white noise and harmonic tests. These tests were performed along each of the six degrees of freedom, three translations and three rotations. This investigation provides fundamental parameters that are required and essential while elaborating a realistic model of the CGS shaking table. Also presented in this paper, is the numerical model of the shaking table that was established and validated.

지반-말뚝 동적 상호 작용 평가를 위한 1g 진동대 실험의 수치 모델링 (Numerical Modeling of 1g Shaking Table Model Pile Tests for Evaluating Dynamic Soil-Pile Interaction)

  • 오만교;김성환;한진태;김명모
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회
    • /
    • pp.173-183
    • /
    • 2010
  • Numerical analysis using a three dimensional finite element program(ABAQUS) is a powerful method which can evaluate the soil-pile-structure interaction under the dynamic loading and reduce the computation time significantly, but has not be widely used because modeling a soil-pile system and setting the parameter for the entire model are difficult and a three dimensional finite element program is not user friendly. However, a three dimensional finite element program is expected to be widely used because of advance in research of modeling technique and development of the modeling and visualization. In this study, ABAQUS is used to simulate the 1g shaking table model pile test, and the numerical results are compared with the 1g shaking table test results. The application about the soil stiffness and boundary condition change is estimated and then parametric study for various input acceleration amplitudes, various input frequencies, and various surcharge is carried out.

  • PDF

실내 진동대 실험을 통한 하구둑 구조물의 내진 안정성에 관한 연구 (A Study on Stability of Earthquake in Estuary Barrage through Shaking Table Test)

  • 신은철;강현회;류병현
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2010년도 추계 학술발표회 2차
    • /
    • pp.38-44
    • /
    • 2010
  • Shaking table tests were performed to reproduce the dynamic behavior of estuary barrage and its subbase soil which can be potentially damaged during earthquake loading. For understanding the vibration effect to the ground during earthquake, the model was formulated with 1/300 scale of prototype estuary barrage and subbase soil. Scott and Iai(1989) proposed the law of the similarity for similar experimental conditions. The laboratory model shaking table test was conducted under the vibration condition of simulated earthquake of 0.154g. The horizontal displacement on the structure was measured during the shaking table test. The pore water pressure was also monitored for the underground layers of soil. The field horizontal displacement and the pore water pressure can be predicted by using the results of the laboratory shaking table test.

  • PDF

Numerical simulation of shaking table test on concrete gravity dam using plastic damage model

  • Phansri, B.;Charoenwongmit, S.;Warnitchai, P.;Shin, D.H.;Park, K.H.
    • Structural Engineering and Mechanics
    • /
    • 제36권4호
    • /
    • pp.481-497
    • /
    • 2010
  • The shaking table tests were conducted on two small-scale models (Model 1 and Model 2) to examine the earthquake-induced damage of a concrete gravity dam, which has been planned for the construction with the recommendation of the peak ground acceleration of the maximum credible earthquake of 0.42 g. This study deals with the numerical simulation of shaking table tests for two smallscale dam models. The plastic damage constitutive model is used to simulate the crack/damage behavior of the bentonite-concrete mixture material. The numerical results of the maximum failure acceleration and the crack/damage propagation are compared with experimental results. Numerical results of Model 1 showed similar crack/damage propagation pattern with experimental results, while for Model 2 the similar pattern was obtained by considering the modulus of elasticity of the first and second natural frequencies. The crack/damage initiated at the changing point in the downstream side and then propagated toward the upstream side. Crack/damage accumulation occurred in the neck area at acceleration amplitudes of around 0.55 g~0.60 g and 0.65 g~0.675 g for Model 1 and Model 2, respectively.

1g shaking table tests on residual soils in Malaysia through different model setups

  • Lim, Jun X.;Lee, Min L.;Tanaka, Yasuo
    • Geomechanics and Engineering
    • /
    • 제16권5호
    • /
    • pp.547-558
    • /
    • 2018
  • Studies of soil dynamic properties in Malaysia are still very limited. This study aims to investigate the dynamic properties of two selected tropical residual soils (i.e., Sandy Clay and Sandy Silt) and a sand mining trail (Silty Sand) in Peninsular Malaysia using 1g shaking table test. The use of 1g shaking table test for soil dynamic testing is often constrained to large strain level and small confining pressure only. Three new experimental setups, namely large laminar shear box test (LLSBT), small chamber test with positive air pressure (SCT), and small sample test with suction (SSTS) are attempted with the aims of these experimental setups are capable of evaluating the dynamic properties of soils covering a wider range of shear strain and confining pressure. The details of each experimental setup are described explicitly in this paper. Experimental results show that the combined use of the LLSBT and SCT is capable of rendering soil dynamic properties covering a strain range of 0.017%-1.48% under confining pressures of 5-100 kPa. The studied tropical residual soils in Malaysia behaved neither as pure sand nor clay, but show a relatively good agreement with the dynamic properties of residual soils in Singapore. Effects of confining pressure and plasticity index on the studied tropical residual soils are found to be insignificant in this particular study.

조적채움벽이 있는 1/5 축소 3층 비연성 철근콘크리트 골조의 진동대 실험 (Shaking Table Test of a 1/5 Scale 3-Story Nonductile infilled Reinforced Concrete Frame)

  • 이한선;우성우
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1998년도 가을 학술발표논문집(II)
    • /
    • pp.541-546
    • /
    • 1998
  • The objective of this research is to observe the actual response of low-rise nonseismic moment-resisting infilled reinforced concrete frame subjected to varied levels of earthquake ground motions. First of all, the reduction scale for the model was determined as 1 : 5 considering the capacity of the shaking table to be used. This model was, then, subjected to the shaking table motions simulating Taft N21E component earthquake ground motions, whose peak ground accelerations(PGA`s) were modified to 0.12g, 0.2g, 0.3g, and 0.4g. The global behavior and failure mode were observed. The lateral accelerations and displacements at each story and local deformations at the critical portions of structure were measured. Before and after each earthquake simulation test, free vibration tests were performed to find the changes in the natural period of the model.

  • PDF

1g 진동대 실험 및 등가정적해석을 이용한 억지말뚝의 사면안정 내진보강 효과 연구 (A Study on Seismic Retrofit Design of the Stabilized Piles by 1g Shaking Table Tests and Pseudo-static Analysis)

  • 한진태;조종석;유민택;이승현
    • 한국방재학회 논문집
    • /
    • 제11권2호
    • /
    • pp.93-101
    • /
    • 2011
  • 국토의 70% 이상이 산지인 국내 지형 조건에서 도로, 철도 등 크고 작은 건설 공사에서는 필연적으로 사면이 형성된다. 그러나, 최근 국내외적으로 빈번히 발생하는 지진에 대한 사면안정 보강공법에 대한 연구는 전무한 실정이다. 이에 본 연구에서는 1 g 진동대 실험 및 등가정적해석을 이용하여 사면의 내진 보강공법으로써 억지말뚝의 적용성을 평가하고, 억지말뚝이 적용된 사면 및 억지말뚝의 지진시 거동을 분석하였다. 1 g 진동대 실험 결과로부터, 억지말뚝 보강 사면의 지진시 사면파괴 억지효과를 검증하였으며, 등가정적해석을 통해 억지 말뚝을 사면 하부 또는 상부보다 사면 파괴면의 중앙부에 말뚝을 설치했을 때 사면파괴 억지효과가 가장 큼을 알 수 있었다. 또한, 말뚝이 사면 중앙부에 설치되었을 경우, 말뚝의 중심 간격에 따른 안전율 변화를 등가정적해석으로부터 분석하였다.