Processing math: 100%
  • Title/Summary/Keyword: 0/1 constraint

Search Result 170, Processing Time 0.026 seconds

SNU AGN Monitoring Project (SAMP) using reverberation mapping of luminous AGNs

  • Jeon, Yiseul;Woo, Jong-Hak
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.70.4-71
    • /
    • 2016
  • The links between super-massive black hole masses and their host galaxy properties are observed, indicating that black hole growth and host galaxy evolution are closely related. Reverberation mapping, which uses the time delay from the central black hole to broad line regions, is one of the best methods to estimate masses of black holes of active galactic nuclei (AGNs). However, only masses of about 50 black holes have been determined in reverberation mapping studies so far, and most of them are limited to optical luminosities below 10^45 erg/s due to the challenges of long-term time domain observations in both photometry and spectroscopy. In this project, we expand reverberation mapping samples to higher luminosities of > 10^44.5 erg/s at 0.1 < z < 0.35, that have expected time lags of 40 - 250 light days. Photometric (using LOAO 1-m and MDM 1.3-m) and spectroscopic (using MDM 2.4-m and Lick 3-m) monitoring campaigns are being conducted for a 3 year duration and 20 day cadence. Precedent photometric observations in 2015B show some targets with variability and follow-up spectroscopic observations are on-going. In this presentation, we introduce our project, present reverberation mapping simulation results, and preliminary results on photometry. These reverberation mapping masses of relatively high luminous AGNs will provide a strong constraint on black hole mass calibration, e.g., the single-epoch mass estimation.

  • PDF

DETERMINATION OF INITIAL CONDITIONS FOR SATELLITE FORMATION ELYING IN ELLIPTICAL ORBITS (타원궤도의 위성편대비행을 위한 초기조건 결정)

  • Lee, Woo-Kyoung;Yoo, Sung-Moon;Park, Sang-Young;Choi, Kyu-Hong;Chang, Young-Keun
    • Journal of Astronomy and Space Sciences
    • /
    • v.22 no.1
    • /
    • pp.21-34
    • /
    • 2005
  • The initial conditions that generate bounded motion in eccentric reference orbit are determined for satellite formation flying. Because Hill's equations cannot describe the relative motion between two satellites in eccentric orbit, a new relative dynamics utilizing the nonlinearity and eccentricity correction for Hill's initial conditions is implemented. The constraint that matches angular rates of chief and deputy satellites is used to obtain the bounded motion between them. The constraint can be applied to satellite formation motions in eccentric orbit, since it implicates J2 perturbation due to the central body's aspherical gravitational forces. The periodic bounded motions are analyzed for the orbit with the eccentricity of less than 0.05 and about 0.5 km relative distance between chief and deputy satellites. It is mainly illustrated that the satellite formations in small eccentric orbits can have hounded motions; consequently, the formation can be kept by matching angular rates of the satellites. These results demonstrate an useful method that reduces the cost for operating satellites by providing effective initial conditions for satellite formation flying in eccentric orbit.

Optimal Relay Selection and Power Allocation in an Improved Low-Order-Bit Quantize-and-Forward Scheme

  • Bao, Jianrong;He, Dan;Xu, Xiaorong;Jiang, Bin;Sun, Minhong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.11
    • /
    • pp.5381-5399
    • /
    • 2016
  • Currently, the quantize-and-forward (QF) scheme with high order modulation and quantization has rather high complexity and it is thus impractical, especially in multiple relay cooperative communications. To overcome these deficiencies, an improved low complex QF scheme is proposed by the combination of the low order binary phase shift keying (BPSK) modulation and the 1-bit and 2-bit quantization, respectively. In this scheme, the relay selection is optimized by the best relay position for best bit-error-rate (BER) performance, where the relays are located closely to the destination node. In addition, an optimal power allocation is also suggested on a total power constraint. Finally, the BER and the achievable rate of the low order 1-bit, 2-bit and 3-bit QF schemes are simulated and analyzed. Simulation results indicate that the 3-bit QF scheme has about 1.8~5 dB, 4.5~7.5 dB and 1~2.5 dB performance gains than those of the decode-and-forward (DF), the 1-bit and 2-bit QF schemes, at BER of 102, respectively. For the 2-bit QF, the scheme of the normalized Source-Relay (S-R) distance with 0.9 has about 5dB, 7.5dB, 9dB and 15dB gains than those of the distance with 0.7, 0.5, 0.3 and 0.1, respectively, at BER of 103. In addition, the proposed optimal power allocation saves about 2.5dB much more relay power on an average than that of the fixed power allocation. Therefore, the proposed QF scheme can obtain excellent features, such as good BER performance, low complexity and high power efficiency, which make it much pragmatic in the future cooperative communications.

GENETIC ALGORITHMIC APPROACH TO FIND THE MAXIMUM WEIGHT INDEPENDENT SET OF A GRAPH

  • Abu Nayeem, Sk. Md.;Pal, Madhumangal
    • Journal of applied mathematics & informatics
    • /
    • v.25 no.1_2
    • /
    • pp.217-229
    • /
    • 2007
  • In this paper, Genetic Algorithm (GA) is used to find the Maximum Weight Independent Set (MWIS) of a graph. First, MWIS problem is formulated as a 0-1 integer programming optimization problem with linear objective function and a single quadratic constraint. Then GA is implemented with the help of this formulation. Since GA is a heuristic search method, exact solution is not reached in every run. Though the suboptimal solution obtained is very near to the exact one. Computational result comprising an average performance is also presented here.

About fully Polynomial Approximability of the Generalized Knapsack Problem (일반배낭문제의 완전다항시간근사해법군의 존재조건)

  • 홍성필;박범환
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.28 no.4
    • /
    • pp.191-198
    • /
    • 2003
  • The generalized knapsack problem or gknap is the combinatorial optimization problem of optimizing a nonnegative linear function over the integral hull of the intersection of a polynomially separable 0-1 polytope and a knapsack constraint. The knapsack, the restricted shortest path, and the constrained spanning tree problem are a partial list of gknap. More interesting1y, all the problem that are known to have a fully polynomial approximation scheme, or FPTAS are gknap. We establish some necessary and sufficient conditions for a gknap to admit an FPTAS. To do so, we recapture the standard scaling and approximate binary search techniques in the framework of gknap. This also enables us to find a weaker sufficient condition than the strong NP-hardness that a gknap does not have an FPTAS. Finally, we apply the conditions to explore the fully polynomial approximability of the constrained spanning problem whose fully polynomial approximability is still open.

Bandwidth - Power Optimization Methodology for SFB Filter Design

  • Shin, Hun-Do;Ryu, Seung-Tak
    • JSTS:Journal of Semiconductor Technology and Science
    • /
    • v.12 no.1
    • /
    • pp.88-98
    • /
    • 2012
  • In this paper, the relationship between the bandwidth (BW) and power efficiency of a source follower based (SFB) filter is quantitatively analyzed, and a design methodology for a SFB filter for optimized BW - power consumption is introduced. The proposed design methodology achieves a maximum BW at a target quality (Q) factor for the given power consumption constraint by controlling design factors individually. In order to achieve the target BW from the maximized BW, a tuning method is introduced. Through the proposed design methodology, a fourth order Butterworth filter was implemented in 0.18 μm CMOS technology. The measured BW, power consumption, and IIP3 are 100 MHz, 33 μW, and 9 dBm, respectively. Compared with other filter structures, the measured results show high BW - power efficiency.

Modified Mass-Preserving Sample Entropy

  • Kim, Chul-Eung;Park, Sang-Un
    • Communications for Statistical Applications and Methods
    • /
    • v.9 no.1
    • /
    • pp.13-19
    • /
    • 2002
  • In nonparametric entropy estimation, both mass and mean-preserving maximum entropy distribution (Theil, 1980) and the underlying distribution of the sample entropy (Vasicek, 1976), the most widely used entropy estimator, consist of nb mass-preserving densities based on disjoint Intervals of the simple averages of two adjacent order statistics. In this paper, we notice that those nonparametric density functions do not actually keep the mass-preserving constraint, and propose a modified sample entropy by considering the generalized 0-statistics (Kaigh and Driscoll, 1987) in averaging two adjacent order statistics. We consider the proposed estimator in a goodness of fit test for normality and compare its performance with that of the sample entropy.

A Study on Impact Analysis of the Korean Anthropometric Characteristic on Shooting (한국인의 인체 특성을 고려한 사격시 충격특성 해석)

  • Lee, J.W.;Lee, Y.S.;Choi, Y.J.;Chae, J.W.;Choi, E.J.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.150-153
    • /
    • 2005
  • The rifle impact of human body is affected by geometry of human for rifling. The interaction of human-rifle system influence a firing accuracy. In this paper, impact analysis of human model for standing postures with two B.C. carried out. ADAMS code and LifeMOD is used in impact analysis of human model and modeling of the human body, respectively. On the shooting, human model is affected by rifle impact during the 0.001 second. Also, Because Human Natural frequency is 5-200Hz, human impact is considered during 0.2-0.005 sec. Dut to the Firng test, Performed simulation time for shooting is 0.1 second. Applied constraint condition to human-rifle system is rotating and spherical condition. Also, The resulrt of changin the position of the grip is dfferent from the each other. As the results, The human model of firing was built successfully.

  • PDF

In vitro Multiplication of Haloxylon recurvum (Moq.) - a Plant for Saline Soil Reclamation

  • Dagla Harchand R.;Shekhawat N.S.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.3
    • /
    • pp.155-160
    • /
    • 2005
  • Haloxylon recurvum (Locally known as Khar) is drought and salt tolerant plant of Thar Desert. This plant is a major biomass producer and has economic and ecological importance for the region. There is need for study on biology, propagation and genetic improvement for utilization of this plant for reclamation of saline soils. We report here on in vitro propagation of Haloxylon recurvum (Moq.) using nodal explant. Secretion of phenolic compound from explants was a major constraint for establishment of culture. This was checked by thorough washing and quick transfer of explant on fresh culture medium. Juvenile nodal explant with leaves was found suitable for culture establishment. Benzy-ladenine(4.0μM) incorporated in Murashige and Skoog (MS) medium with additives (50 mg/L ascorbic acid and 25 mg/L each of adenine sulphate, arginine and citric acid) induced multiple shoots from nodal explant. Addition of 1.0μM naphthalene acetic acid (NAA) in combination with 4.0μM BAP improved the growth of axillary shoots. Further shoot amplification was achieved by repeated subculture of mother explants on fresh medium. Forty percent of the micropropagated shoots rooted on half-strength MS medium with 4.0μM indolebutyric acid (IBA) and 100 mg/L activated charcoal, at 28±2C and 60% RH. Sixty percent of these plantlets were hardened in green house.

Transition Temperature Evaluation of 1Cr-1Mo-0.25V Steel Using Miniaturized Charpy Impact Specimen (소형 샤르피 충격시험편을 이용한 1Cr-1Mo-0.25V강의 천이온도 평가)

  • Nahm Seung Hoon;Kim Si Cheon;Lee Hae Moo
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.42-46
    • /
    • 1998
  • Miniaturized specimen technology Permits mechanical behavior to be determined using a minimum volume of material. The technology is useful in case of not collecting a large amount of materials from industrial equipments. Five kinds of accelerated degradation materials were prepared by isothermal aging heat treatment at 630C. Three kinds of specimens were prepared for impact testing. In order to increase plastic constraint of subsize specimen, side-groove was introduced. Results between subsize and full size impact testing were compared. Size effects correlations were developed for the impact properties of turbine rotor material. These correlations successfully predict the ductile brittle transition temperature (DBTT) of full size Charpy impact specimens based on subsize specimen data.

  • PDF