Browse > Article
http://dx.doi.org/10.5140/JASS.2005.22.1.021

DETERMINATION OF INITIAL CONDITIONS FOR SATELLITE FORMATION ELYING IN ELLIPTICAL ORBITS  

Lee, Woo-Kyoung (Dept. of Astronomy, Yonsei University)
Yoo, Sung-Moon (Dept. of Astronomy, Yonsei University)
Park, Sang-Young (Dept. of Astronomy, Yonsei University)
Choi, Kyu-Hong (Dept. of Astronomy, Yonsei University)
Chang, Young-Keun (School of Aerospace and Mechanical Engineering, Hankuk Aviation University)
Publication Information
Journal of Astronomy and Space Sciences / v.22, no.1, 2005 , pp. 21-34 More about this Journal
Abstract
The initial conditions that generate bounded motion in eccentric reference orbit are determined for satellite formation flying. Because Hill's equations cannot describe the relative motion between two satellites in eccentric orbit, a new relative dynamics utilizing the nonlinearity and eccentricity correction for Hill's initial conditions is implemented. The constraint that matches angular rates of chief and deputy satellites is used to obtain the bounded motion between them. The constraint can be applied to satellite formation motions in eccentric orbit, since it implicates J2 perturbation due to the central body's aspherical gravitational forces. The periodic bounded motions are analyzed for the orbit with the eccentricity of less than 0.05 and about 0.5 km relative distance between chief and deputy satellites. It is mainly illustrated that the satellite formations in small eccentric orbits can have hounded motions; consequently, the formation can be kept by matching angular rates of the satellites. These results demonstrate an useful method that reduces the cost for operating satellites by providing effective initial conditions for satellite formation flying in eccentric orbit.
Keywords
satellite formation flying; relative bounded motion;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Alfriend, K. T., Schaub, H., & Gim, D. W. 2000, in Guidance and Control Conference, eds. Culp, R. D., & Dukes, E. M (Sandiego: AAS), AAS 00-012
2 Gim, D. W., & Alfriend, K. T. 2001, in Spaceflight Mechanics Meeting, ed. Sackett, L. L (Sandiego: AAS), AAS 01-222
3 Inalhan, G., Tillerson, M., & How, J. P. 2002, Journal of Guidance, Control, and Dynamics, 25, 48   DOI   ScienceOn
4 Kwok, J. H. 1987, The Artificial Satellite Analysis Program(ASAP), Version 2.0, JPL NPO-17522
5 Kechichian, J. A. 1997, in Astrodynamics Conference, eds. Kaufman, B., Cefola, P. J., & Spencer, D. B. (Sandiego: AAS), AAS 97-733
6 Schaub, H., Vadali, S. R., Junkins, J. L., & Alfriend, K. T. 1999, in Astrodynamics Specialists Conference, eds. Howell, K. C., Hoots, F. R., Kaufman, B., & Alfriend, K. T. (Sandiego: AAS), AAS 99-310
7 Schweighart, S. A. 2001, MS Thesis, Massachusetts Institute of Technology
8 Vadali, S. R., Alfriend, K. T., & Vaddi, S. S. 2000, in the Richard H Battin Astrodynamics Sym­posium, eds. Junkins, J. L., Alfriend, K. T., & Howell, K. C. (Sandiego: AAS), AAS 00-258
9 Vadali, S. R., Vaddi, S. S., & Alfriend, K. T. 2002, International Journal of Robust and Nonlinear Control, 12, 97   DOI   ScienceOn
10 Vaddi, S. S., Vadali, S. R., & Alfriend, K. T. 2003, Journal of Guidance, Control, and Dynamics, 26, 214   DOI   ScienceOn
11 Yamanka, K., & Ankersen, F. 2002, Journal of Guidance, Control, and Dynamics, 25, 60   DOI   ScienceOn
12 Schaub, H., & Alfriend, K. T. 2001, Celestial Mechanics and Dynamics Astronomy 79, 77   DOI   ScienceOn
13 Melton, R. G. 2000, Journal of Guidance, Control, and Dynamics, 23, 604   DOI   ScienceOn
14 Sabol, C., Burns, R., & Mclaughlin, C. A. 2001, Journal of Spacecraft and Rockets, 38, 270   DOI   ScienceOn