• 제목/요약/키워드: -cyclodextrin

검색결과 573건 처리시간 0.021초

Molecular Cloning and Characterization of Maltogenic Amylase from Deinococcus geothermalis (Deinococcus geothermalis 유래 maltogenic amylase의 유전자 발현 및 특성확인)

  • Jung, Jin-Woo;Jung, Jong-Hyun;Seo, Dong-Ho;Kim, Byung-Yong;Park, Cheon-Seok
    • Korean Journal of Food Science and Technology
    • /
    • 제43권3호
    • /
    • pp.369-374
    • /
    • 2011
  • A putative maltogenic amylase gene (DGMA) was cloned from the Deinococcus geothermalis DSM 11300 genome using the polymerase chain reaction. The gene encoded 608 amino acids with a predicted molecular mass of 68,704 Da. The recombinant DGMA was constitutively expressed using the pHCXHD plasmid. As expected, the recombinant DGMA hydrolyzed cyclodextrins and starch to maltose and pullulan to panose by cleaving the ${\alpha}$-(1,4)-glycosidic linkages, as observed for typical maltogenic amylases. Characterization of the recombinant DGMA revealed that the highest maltogenic amylase activity occurred at $40^{\circ}C$ and pH 6.0. The half-life of catalytic activity at $65^{\circ}C$ and $55^{\circ}C$ were 8.2 min and 187.4 min, respectively. DGMA mainly hydrolyzed ${\beta}$-cyclodextrin, soluble starch, and pullulan and its efficient ratio of those substrates was 9:4.5:1.

Study on the Inclusion Behavior of Sulfobutylether-β-Cyclodextrin with Perphenazine by Flow Injection Chemiluminescence

  • Shen, Minxia;Lv, Hairu;Song, Zhenghua
    • Bulletin of the Korean Chemical Society
    • /
    • 제34권11호
    • /
    • pp.3199-3205
    • /
    • 2013
  • The inclusion behavior of sulfobutylether-${\beta}$-cyclodextrin (SBE-${\beta}$-CD) with perphenazine (PPH) was first studied by flow injection (FI)-chemiluminescence (CL) analysis with proposed $lg[(I_0-I_s)/I_s]=lgK_{P-CD}+nlg[C_{PPH}]$ model and molecular docking. Results showed that a 1:1 complex of SBE-${\beta}$-CD/PPH could online form, with the formation constant $K_{P-CD}$ of $2.57{\times}10^7Lmol^{-1}$ at 298 K. The thermodynamic parameters showed that the inclusion behavior of SBE-${\beta}$-CD/PPH was a spontaneous process by hydrophobic interaction. The molecular docking results revealed PPH entered into the larger cavity of SBE-${\beta}$-CD with two hydrogen bonds. Based on the linear relationship of the decrement of luminol/SBE-${\beta}$-CD/PPH CL intensity against the logarithm of PPH concentration ranging from 0.03 to 30.0 ng $mL^{-1}$, the present FI-CL analysis using luminol/SBE-${\beta}$-CD/PPH system was successfully applied to PPH determination in biological fluids and tablets with recoveries from 94.5 to 105.6% and RSDs less than 2.6% (n = 5).

Stabilization of Wheat $\beta$-Amylase by Modification with $IO_4$-Oxidized Starch ($IO_4$-산화전분 변형에 의한 밀 $\beta$-Amylase의 안정성 증가)

  • 안용근
    • The Korean Journal of Food And Nutrition
    • /
    • 제13권4호
    • /
    • pp.348-352
    • /
    • 2000
  • The stabilization of wheat $\beta$-amylase( Himaltosin GL, Hankyu-Bio) was attained by modification wish periodate-oxidized soluble starch. The specific activities of modified enzyme at pH 9.7 and pH 8.0 were 17% and 96%, respectively, compared with that of native enzyme. The pH stability of modified enzyme was increased at pH 2~5 and 6~12 in the presence of $\alpha$-cyclodextrin( $\alpha$-CD) compared with that of native enzyme, and optimum pH of the enzyme was changed from pH 5.0 to pH 7.0 by the modification. Thermal stability of the modified enzyme was increased. After treatment at 6$0^{\circ}C$ for 10min, the activity remained 8% for the enzyme modified at pH 8.0 in the presence of $\alpha$-CD and tested in the presence of $\alpha$-CD, 5% for the native enzyme. The native enzyme and modified enzyme showed one peak in HPLC. The molecular weight of the modified enzyme was slightly increased in HPLC analysis.

  • PDF

Structure and $Ca^{2+}$-ion effects on the function of $\alpha$-cyclodextrin Glucanotransferase from B. macerans : An X-ray study (Bacillus macerans에서 정제한 $\alpha$-cyclooextrin glucanotransferase의 구조와 칼슘이온이 기능에 미치는 영향 : X-ray 연구)

  • 최희욱;홍순강
    • KSBB Journal
    • /
    • 제19권2호
    • /
    • pp.159-163
    • /
    • 2004
  • The X-ray structure of the cydodextrin-glucanotransferase of Bacillus macerans was solved by molecular replacement at 2.0 ${\AA}$ resolution. The refined structure has a crystallographic R-factor of 16.6%, (R$\sub$free/ = 20.5%). A new metal binding site occupied by two Ca$\^$2+/-ions was found at an accession channel of the active site. There is a large accumulation of negative charges that bind these Ca$\^$2+/-ions, thereby connecting segment ${\beta}$13-${\alpha}$G (residue 254-276) to the main body of domain A (at ${\alpha}$H, residue 283-297). The segment 313-${\alpha}$G contains the catalytic residue Glu258 between subsite 1 and -1 and Tyr260 (subsite 2) which is located at the entrance of the active site. The Ca$\^$2+/-site 3a,b may have a major role for the activity and specificity of this CGTase, although it is not even conserved for the a-subclass of CGTases.

Development of Hydrogel Containing Catechin for Wound Dressing (카테킨이 함유된 창상피복제용 하이드로젤의 개발)

  • Kim, Jin;Cho, Eun Bi;Lee, Ki-Young
    • Polymer(Korea)
    • /
    • 제37권4호
    • /
    • pp.462-469
    • /
    • 2013
  • Catechin (CTEC) is well-known as a very powerful antioxidant, containing the effects of anti-inflammation and skin wound healing. In this study, CTEC/${\beta}$-cyclodextrin (${\beta}$-CD) nanoparticles were incorporated into poly(vinyl alcohol) (PVA)/pectin (PT) hydrogel. The composite was designed for the induction of re-epithelializaton in skin wound. CTEC/${\beta}$-CD nanoparticles were prepared by a molecular complex method. The size of the CTEC nanoparticles formed in the hydrogel was in the range of $250{\pm}17.5$ nm. The incorporation efficiency of CTEC in the nanoparticles was 74%. The cumulative amounts of CTEC released from the hydrogel containing CTEC nanoparticles in the buffers of pH7.4 and 5.5 were $86.51{\pm}3.14%$ and $35.95{\pm}2.14%$ of total CTEC loaded in the hydrogel within 72 h, respectively. Also, in the wound healing test, the CTEC nanoparticles-loaded PVA/PT hydrogel showed faster healing of the wound made in rat dorsum than the CTEC gel.

Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae

  • Van, Trinh Thi Kim;Ryu, Soo-In;Lee, Kyung-Ju;Kim, Eun-Ju;Lee, Soo-Bok
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권5호
    • /
    • pp.792-799
    • /
    • 2007
  • A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.

EFFECTS OF SURFACTANTS ON THE FENTON DEGRADATION OF PHENANTHRENE IN CONTAMINATED SEDIMENTS

  • Jee, Sang-Hyun;Ko, Seok-Oh;Jang, Hae-Nam
    • Environmental Engineering Research
    • /
    • 제10권3호
    • /
    • pp.138-143
    • /
    • 2005
  • Laboratory batch experiments were conducted to evaluate the Fenton degradation rates of phenanthrene. Fenton reactions for the degradation of phenanthrene were carried out with aqueous and slurry phase, to investigate the effects of sorption of phenanthrene onto solid phase. Various types of surfactants and electrolyte solutions were used to evaluate the effects on the phenanthrene degradation rates by Fenton's reaction. A maximum 90% removal of phenanthrene was achieved in aqueous phase with 0.9% of $H_2O_2$ and 300 mg/L of $Fe^{2+}$ at pH 3. In aqueous phase reaction, inhibitory effects of synthetic surfactants on the removal of phenanthrene were observed, implying that surfactant molecules acted as strong scavenger of hydroxyl radicals. However, use of $carboxymethyl-{\beta}-cyclodextrin$ (CMCD), natural surfactant, showed a slight enhancement in the degradation of phenanthrene. It was considered that reactive radicals formed at ternary complex were located in close proximity to phenanthrene partitioned into CMCD cavities. It was also show that Fenton degradation of phenanthrene were greatly enhanced by addition of NaCl, indicating that potent radical ion ($OCI^-$) played an important role in the phenanthrene degradation, although chloride ion might be acted as scavenger of radicals at low concentrations. Phenanthrene in slurry phase was resistant to Fenton degradation. It might be due to the fact that free radicals were mostly reacting with dissolved species rather than with sorbed phenanthrene. Even though synthetic surfactants were added to increase the phenanthrene concentration in dissolved phase, low degradation efficiency was obtained because of the scavenging of radicals by surfactants molecules. However, use of CMCD in slurry phase, showed a slight enhancement in the phenanthrene degradation. As an alternative, use of Fenton reaction with CMCD could be considered to increase the degradation rates of phenanthrene desorbed from solid phase.

Browning and Pungent Taste Reduction Techniques in Onion Extract (양파추출물의 갈변 및 매운맛 억제기술)

  • Kim, Hee Sun;Kim, Myung Hwan
    • Food Engineering Progress
    • /
    • 제13권4호
    • /
    • pp.360-364
    • /
    • 2009
  • The onion extractions of MIX treatment (5% $\beta$ cyclodextrin+1% calcium chloride+1% soluble starch mixture solution) using hot water (100${^{\circ}C}$ and 80${^{\circ}C}$) and ultrasonic treatment (25${^{\circ}C}$) incresed L values and decreased a and b values apart from the extraction methods. Extent of the browning reaction as caused by the MIX treatment (0.093) following 100${^{\circ}C}$ water extraction resulted in as low as 31% O.D. level, as compared to the control(0.296). Analysis of the pyruvic acid showed that the control had higher content of pyruric acid than MIX-treated samples. The MIX treatment had lower intensities and higher preferences of browning color and pungency taste compared to the control. The total and coliform microbial counts increased continuously during storage period, while the MIX treatment reduced the number of viable cells. Finally, it was concluded that the MIX treatment was highly effective in suppressing the undesirable browning color and pungent taste after processing, and the microbes increment during storage.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Journal of Audiology & Otology
    • /
    • 제23권2호
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.

ROS Scavenger, Ebselen, Has No Preventive Effect in New Hearing Loss Model Using a Cholesterol-Chelating Agent

  • Lee, Min Young;Kabara, Lisa L.;Swiderski, Donald L.;Raphael, Yehoash;Duncan, R. Keith;Kim, Young Ho
    • Korean Journal of Audiology
    • /
    • 제23권2호
    • /
    • pp.69-75
    • /
    • 2019
  • Background and Objectives: The antioxidant ebselen will be able to limit or prevent the ototoxicity arising from 2-hydroxypropyl-β-cyclodextrin (HPβCD). Niemann-Pick Type C (NPC) disease is a disorder of lysosomal storage manifested in sphingolipidosis. Recently, it was noted that experimental use of HPβCD could partially resolve the symptoms in both animals and human patients. Despite its desirable effect, HPβCD can induce hearing loss, which is the only major side effect noted to date. Understanding of the pathophysiology of hearing impairment after administration of HPβCD and further development of preventive methods are essential to reduce the ototoxic side effect. The mechanisms of HPβCD-induced ototoxicity remain unknown, but the resulting pathology bears some resemblance to other ototoxic agents, which involves oxidative stress pathways. To indirectly determine the involvement of oxidative stress in HPβCD-induced ototoxicity, we tested the efficacy of an antioxidant reagent, ebselen, on the extent of inner ear side effects caused by HPβCD. Materials and Methods: Ebselen was applied prior to administration of HPβCD in mice. Auditory brainstem response thresholds and otopathology were assessed one week later. Bilateral effects of the drug treatments also were examined. Results: HPβCD-alone resulted in bilateral, severe, and selective loss of outer hair cells from base to apex with an abrupt transition between lesions and intact areas. Ebselen co-treatment did not ameliorate HPβCD-induced hearing loss or alter the resulting histopathology. Conclusions: The results indirectly suggest that cochlear damage by HPβCD is unrelated to reactive oxygen species formation. However, further research into the mechanism(s) of HPβCD otopathology is necessary.