Browse > Article

Cloning and Characterization of Glycogen-Debranching Enzyme from Hyperthermophilic Archaeon Sulfolobus shibatae  

Van, Trinh Thi Kim (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Ryu, Soo-In (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Lee, Kyung-Ju (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Kim, Eun-Ju (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Lee, Soo-Bok (Research Institute of Food and Nutritional Sciences and Department of Food and Nutrition, Brain Korea 21 Project, Yonsei University)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.5, 2007 , pp. 792-799 More about this Journal
Abstract
A gene encoding a putative glycogen-debranching enzyme in Sulfolobus shibatae(abbreviated as SSGDE) was cloned and expressed in Escherichia coli. The recombinant enzyme was purified to homogeneity by heat treatment and Ni-NTA affinity chromatography. The recombinant SSGDE was extremely thermostable, with an optimal temperature at $85^{\circ}C$. The enzyme had an optimum pH of 5.5 and was highly stable from pH 4.5 to 6.5. The substrate specificity of SSGDE suggested that it possesses characteristics of both amylo-1,6-glucosidase and $\alpha$-1,4-glucanotransferase. SSGDE clearly hydrolyzed pullulan to maltotriose, and $6-O-\alpha-maltosyl-\beta-cyclodextrin(G2-\beta-CD)$ to maltose and $\beta$-cyclodextrin. At the same time, SSGDE transferred maltooligosyl residues to the maltooligosaccharides employed, and maltosyl residues to $G2-\beta-CD$. The enzyme preferentially hydrolyzed amylopectin, followed in a decreasing order by glycogen, pullulan, and amylose. Therefore, the present results suggest that the glycogen-debranching enzyme from S. shibatae may have industrial application for the efficient debranching and modification of starch to dextrins at a high temperature.
Keywords
Sulfolobus shibatae; glycogen-debranching enzyme; amylo-1,6-glucosidase; $\alpha-1,4-glucanotransferase$; hyperthermophilic enzyme;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By Web Of Science : 3  (Related Records In Web of Science)
연도 인용수 순위
1 Braun, C., T. Lindhorst, N. B. Madsen, and S. G. Withers. 1996. Identification of Asp 549 as the catalytic nucleophile of glycogen-debranching enzyme via trapping of the glycosylenzyme intermediate. Biochemistry 35: 5458-5463   DOI   ScienceOn
2 Fang, T. Y., W.-C. Tseng, C.-J. Yu, and T.-Y. Shih. 2005. Characterization of the thermophilic isoamylase from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. J. Mol. Catal. B Enzym. 33: 99-107   DOI   ScienceOn
3 Liu, W., M. L. De Castro, J. Takrama, P. T. Bilous, T. Vinayagamoorthy, N. B. Madsen, and R. C. Bleackley. 1993. Molecular cloning, sequencing, and analysis of the cDNA for rabbit muscle glycogen-debranching enzyme. Arch. Biochem. Biophys. 306: 232-239   DOI   ScienceOn
4 Maruta, K., M. Kubota, S. Fukuda, and M. Kurimoto. 2000. Cloning and nucleotide sequence of a gene encoding a glycogen-debranching enzyme in the trehalose operon from Arthrobacter sp. Q36. Biochim. Biophys. Acta 1476: 377- 381   DOI   ScienceOn
5 Nakayama, A., K. Yamamoto, and S. Tabata. 2000. High expression of glycogen-debranching enzyme in Escherichia coli and its competent purification method. Protein Expr. Purif. 19: 298-303   DOI   ScienceOn
6 Yang, H., M. Y. Liu, and T. Romeo. 1996. Coordinate genetic regulation of glycogen catabolism and biosynthesis in Escherichia coli via the CsrA gene product. J. Bacteriol. 178: 1012-1017   DOI
7 Kim, M.-J., H.-E. Park, H.-K. Sung, T. H. Park, and J. Cha. 2005. Action mechanism of transfructosylation catalyzed by Microbacterium laevaniformans levansucrase. J. Microbiol. Biotechnol. 15: 99-104   과학기술학회마을
8 Maruta, K., H. Mitsuzumi, T. Nakada, M. Kubota, H. Chaen, S. Fukuda, T. Sugimoto, and M. Kurimoto. 1996. Cloning and sequencing of a cluster of genes encoding novel enzymes of trehalose biosynthesis from thermophilic archaebacterium Sulfolobus acidocaldarius. Biochim. Biophys. Acta 1291: 177-181   DOI   ScienceOn
9 Yang, B. Z., J. H. Ding, J. J. Enghild, Y. Bao, and Y.-T. Chen. 1992. Molecular cloning human muscle glycogendebranching enzyme. J. Biol. Chem. 267: 9294-9299
10 Thompson, J. D., D. G. Higgins, and T. J. Gibson. 1994. CLUSTAL W: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 22: 4673-4680   DOI   ScienceOn
11 Nakayama, A., K. Yamamoto, and S. Tabata. 2001. Identification of the catalytic residues of bifunctional glycogen-debranching enzyme. J. Biol. Chem. 276: 28824- 28828   DOI   ScienceOn
12 Van der Maarel, M. J., B. Van der Veen, J. C. Uitdehaag, H. Leemhuis, and L. Dijkhuizen. 2002. Properties and applications of starch-converting enzymes of the ${\alpha}-amylase$ family. J. Biotechnol. 94: 137-155   DOI   ScienceOn
13 Dubnau, D. and R. D. Abenson. 1971. Fate of transforming DNA following uptake by competent Bacillus subtilis. J. Mol. Biol. 56: 209-221   DOI
14 Duggleby, R. G. and D. R. Leonard. 1992. DNRPEASY, a data analysis computer program
15 Bae, S. S., Y. J. Kim, S. H. Yang, J. K. Lim, J. H. Jeon, H. S. Lee, S. G. Kang, S.-J. Kim, and J.-H. Lee. 2006. Thermococcus onnurineus sp. nov., a hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent area at the PACMANUS field. J. Microbiol. Biotechnol. 16: 1826- 1831   과학기술학회마을
16 Urlaub, H. and G. Woeber. 1975. Identification of isoamylase, a glycogen-debranching enzyme, from Bacillus amyloliquefaciens. FEBS Lett. 57: 1-4   DOI   ScienceOn
17 Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 25: 3389-3402   DOI
18 Bates, E. J., G. M. Heaton, C. Taylor, J. C. Kernohan, and P. Cohen. 1975. Debranching enzyme from rabbit skeletal muscle: Evidence for the location of two active centers on a single polypeptide chain. FEBS Lett. 58: 181- 185   DOI   ScienceOn
19 Taylor, C., A. J. Cox, J. C. Kernohan, and P. Cohen. 1975. Debranching enzyme from rabbit skeletal muscle: Purification, properties and physiological role. Eur. J. Biochem. 51: 105- 115   DOI   ScienceOn
20 Bradford, M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248- 254   DOI   ScienceOn
21 Fang, T. Y., X. G. Hung, T. Y. Shih, and W. C. Tseng. 2004. Characterization of the trehalosyl dextrin-forming enzyme from the thermophilic archaeon Sulfolobus solfataricus ATCC 35092. Extremophiles 8: 335-343
22 Gillard, B. K. and T. E. Nelson. 1977. Amylo-1,6-glucosidase/ $4-{\alpha}-glucanotransferase$: Use of reversible substrate model inhibitors to study the binding and active sites of rabbit muscle debranching enzyme. Biochemistry 16: 3978- 3987   DOI   ScienceOn
23 Kim, I. C., J. H. Cha, J. R. Kim, S. Y. Jang, B. C. Seo, T. K. Cheong, D. S. Lee, Y. D. Choi, and K. H. Park. 1992. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108-22114
24 Lee, E. Y. C., J. H. Carter, L. D. Nielsen, and E. H. Fischer. 1970. Purification and properties of yeast amylo-1,6- glucosidase-oligo-1,4-1,4-glucantransferase. Biochemistry 9: 2347-2355
25 Kim, T. J., M. J. Kim, B. C. Kim, J. C. Kim, T. K. Cheong, J. W. Kim, and K. H. Park. 1999. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microbiol. 65: 1644-1651
26 Lee, E. Y. C. and W. J. Whelan. 1971. Glycogen and starch debranching enzyme, pp. 191-234. In P. D. Boyer (ed.), The Enzymes, 3rd Ed. Academic Press, New York, U.S.A
27 Watanabe, K., Y. Hata, H. Kizaki, Y. Katsube, and Y. Suzuki. 1997. The refined crystal structure of Bacillus cereus oligo- 1,6-glucosidase at 2.0 ${\AA}$ resolution: Structural characterization of proline-substitution sites for protein thermostabilization. J. Mol. Biol. 269: 142-153   DOI   ScienceOn
28 Ryu, S.-I., C.-S. Park, J. Cha, E.-J. Woo, and S.-B. Lee. 2005. A novel trehalose-synthesizing glycosyltransferase from Pyrococcus horikoshii: Molecular cloning and characterization. Biochem. Biophys. Res. Commun. 329: 429-436   DOI   ScienceOn
29 Paik, S.-K., H.-S. Yun, H. Iwahashi, K. Obuchi, and I. Jin. 2005. Effect of trehalose on stabilization of cellular components and critical targets against heat shock in Saccharomyces cerevisiae KNU5377. J. Microbiol. Biotechnol. 15: 965- 970   과학기술학회마을
30 Sambrook, J. and D. W. Russell. 2001. Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, U.S.A