Browse > Article
http://dx.doi.org/10.9721/KJFST.2011.43.3.369

Molecular Cloning and Characterization of Maltogenic Amylase from Deinococcus geothermalis  

Jung, Jin-Woo (Department of Food Science & Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
Jung, Jong-Hyun (Department of Food Science & Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
Seo, Dong-Ho (Department of Food Science & Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
Kim, Byung-Yong (Department of Food Science & Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
Park, Cheon-Seok (Department of Food Science & Biotechnology and Institute of Life Sciences & Resources, Kyung Hee University)
Publication Information
Korean Journal of Food Science and Technology / v.43, no.3, 2011 , pp. 369-374 More about this Journal
Abstract
A putative maltogenic amylase gene (DGMA) was cloned from the Deinococcus geothermalis DSM 11300 genome using the polymerase chain reaction. The gene encoded 608 amino acids with a predicted molecular mass of 68,704 Da. The recombinant DGMA was constitutively expressed using the pHCXHD plasmid. As expected, the recombinant DGMA hydrolyzed cyclodextrins and starch to maltose and pullulan to panose by cleaving the ${\alpha}$-(1,4)-glycosidic linkages, as observed for typical maltogenic amylases. Characterization of the recombinant DGMA revealed that the highest maltogenic amylase activity occurred at $40^{\circ}C$ and pH 6.0. The half-life of catalytic activity at $65^{\circ}C$ and $55^{\circ}C$ were 8.2 min and 187.4 min, respectively. DGMA mainly hydrolyzed ${\beta}$-cyclodextrin, soluble starch, and pullulan and its efficient ratio of those substrates was 9:4.5:1.
Keywords
maltogenic amylase; Deinococcus geothermalis; ${\beta}$-cyclodextrin, panose;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 Kim TJ, Kim MJ, Kim BC, Kim JC, Cheong TK, Kim JW, Park KH. Modes of action of acarbose hydrolysis and transglycosylation catalyzed by a thermostable maltogenic amylase, the gene for which was cloned from a Thermus strain. Appl. Environ. Microb. 65: 1644-1651 (1999)
2 Cha HJ, Yoon HG, Kim YW, Lee HS, Kim JW, Kweon KS, Oh BH, Park KH. Molecular and enzymatic characterization of a maltogenic amylase that hydrolyzes and transglycosylates acarbose. Eur. J. Biochem. 253: 251-262 (1998)   DOI   ScienceOn
3 Oh KW, Kim MJ, Kim HY, Kim BY, Baik MY, Auh JH, Park CS. Enzymatic characterization of a maltogenic amylase from Lactobacillus gasseri ATCC 33323 expressed in Escherichia coli. FEMS Microbiol. Lett. 252: 175-181 (2005)   DOI   ScienceOn
4 Cheong KA, Kim TJ, Yoon JW, Park CS, Lee TS, Kim YB, Park KH, Kim JW. Catalytic activities of intracellular dimeric neopullulanase on cyclodextrin, acarbose and maltose. Biotechnol. Appl. Bioc. 35: 27-34 (2002)   DOI   ScienceOn
5 Cho HY, Kim YW, Kim TJ, Lee HS, Kim DY, Kim JW, Lee YW, Leed S, Park KH. Molecular characterization of a dimeric intracellular maltogenic amylase of Bacillus subtilis SUH4-2. Biochim. Biophys. Acta 1478: 333-340 (2000)   DOI   ScienceOn
6 Ibuka A, Tonozuka T, Matsuzawa H, Sakai H. Conversion of neopullulanase-$\alpha$-amylase from Thermoactinomyces vulgaris R-47 into an amylopullulanse-type enzyme. J. Biochem. 123: 275-282 (1998)   DOI   ScienceOn
7 Turner P, Labes A, Fridjonsson OH, Hreggvidson GO, Schonheit P, Kristjansson JK, Holst O, Karlsson EN. Two novel cyclodextrin- degrading enzymes isolated from thermophilic bacteria have similar domain structures but differ in oligomeric state and activity profile. J. Biosci. Bioeng. 100: 380-390 (2005)   DOI   ScienceOn
8 Kim TJ, Shin JH, Oh JH, Kim MJ, Lee SB, Ryu S, Kwon K, Kim JW, Choi EH, Robyt JF, Park KH. Analysis of the gene encoding cyclomaltodextrinase from alkalophilic Bacillus sp. I-5 and characterization of enzymatic properties. Arch. Biochem. Biophys. 353: 221-227 (1998)   DOI   ScienceOn
9 Kim IC, Cha JH, Kim JR, Jang SY, Seo BC, Cheong TK, Lee DS, Choi YD, Park KH. Catalytic properties of the cloned amylase from Bacillus licheniformis. J. Biol. Chem. 267: 22108- 22114 (1992)
10 Makarova KS, Omelchenko MV, Gaidamakova EK, Matrosova VY, Vasilenko A, Zhai M, Lapidus A, Copeland A, Kim E, Land M, Mavrommatis K, Pitluck S, Richardson PM, Detter C, Brettin T, Saunders E, Lai B, Ravel B, Kemner KM, Wolf YI, Sorokin A, Gerasimova AV, Gelfand MS, Fredrickson JK, Koonin EV, Daly MJ. Deinococcus geothermalis: The pool of extreme radiation resistance genes shrinks. PLoS One 2: e955 (2007)   DOI
11 Ferreira AC, Nobre MF, Rainey FA, Silva MT, Wait R, Burghardt J, Chung AP, da Costa MS. Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int. J. Syst. Bacteriol. 47: 939-947 (1997)   DOI   ScienceOn
12 Palomo M, Kralj S, van der Maarel MJ, Dijkhuizen L. The unique branching patterns of Deinococcus glycogen branching enzymes are determined by their N-terminal domains. Appl. Environ. Microb. 75: 1355-1362 (2009)   DOI   ScienceOn
13 Tonozuka T, Mogi S, Shimura Y, Ibuka A, Sakai H, Matsuzawa H, Sakano Y, Ohta T. Comparison of primary structures and substrate specificities of two pullulan-hydrolyzing $\alpha$-amylases, TVA I and TVA II, from Thermoactinomyces vulgaris R-47. Biochim. Biophys. Acta 1252: 35-42 (1995)   DOI   ScienceOn
14 Jung JH, Seo DH, Ha SJ, Song MC, Cha J, Yoo SH, Kim TJ, Baek NI, Baik MY, Park CS. Enzymatic synthesis of salicin glycosides through transglycosylation catalyzed by amylosucrases from Deinococcus geothermalis and Neisseria polysaccharea. Carbohyd. Res. 344: 1612-1619 (2009)   DOI   ScienceOn
15 Park JM, Han NS, Kim TJ. Rapid detection and isolation of known and putative $\alpha$-L-arabinofuranosidase genes using degenerate PCR primers. J. Microbiol. Biotech. 17: 481-489 (2007)
16 Miller GL. Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal. Chem. 31: 426-428 (1959)   DOI
17 Hondoh H, Kuriki T, Matsuura Y. Three-dimensional structure and substrate binding of Bacillus stearothermophilus neopullulanase. J. Mol. Biol. 326: 177-188 (2003)   DOI   ScienceOn
18 Lee HS, Kim MS, Cho HS, Kim JI, Kim TJ, Choi JH, Park C, Oh BH, Park KH. Cyclomaltodextrinase, neopullulanase, and maltogenic amylase are nearly indistinguishable from each other. J. Biol. Chem. 277: 21891-21897 (2002)   DOI
19 Park KH, Kim TJ, Cheong TK, Kim JW, Oh BH, Svensson B. Structure, specificity, and function of cyclomaltodextrinase, a multispecific enzyme of the $\alpha$-amylase family. Biochim. Biophys. Acta 1478: 165-185 (2000)   DOI   ScienceOn
20 Kim JS, Cha SS, Kim HJ, Kim TJ, Ha NC, Oh ST, Cho HS, Cho MJ, Kim MJ, Lee HS, Kim JW, Choi KY, Park KH, Oh BH. Crystal structure of a maltogenic amylase provides insights into a catalytic versatility. J. Biol. Chem. 274: 26279-26286 (1999)   DOI
21 Smith KA, Salyers AA. Characterization of a neopullulanase and an alpha-glucosidase from Bacteroides thetaiotaomicron 95-1. J.Bacteriol. 173: 2962-2968 (1991)
22 Igarashi K, Ara K, Saeki K, Ozaki K, Kawai S, Ito S. Nucleotide sequence of the gene that encodes a neopullulanase from an alkalophilic Bacillus. Biosci. Biotech. Bioch. 56: 514-516 (1992)   DOI   ScienceOn
23 Yebra MJ, Blasco A, Sanz P. Expression and secretion of Bacillus polymyxa neopullulanase in Saccharomyces cerevisiae. FEMS Microbiol. Lett. 170: 41-49 (1999)   DOI   ScienceOn
24 Takata H, Kuriki T, Okada S, Takesada Y, Iizuka M, Minamiura N, Imanaka T. Action of neopullulanase. Neopullulanase catalyzes both hydrolysis and transglycosylation at$\alpha$-(1$\rightarrow$4)- and $\alpha$-(1$\rightarrow$6)- glucosidic linkages. J. Biol. Chem. 267: 18447-18452 (1992)
25 Kamasaka H, Sugimoto K, Takata H, Nishimura T, Kuriki T. Bacillus stearothermophilus neopullulanase selective hydrolysis of amylose to maltose in the presence of amylopectin. Appl. Environ. Microb. 68: 1658-1664 (2002)   DOI   ScienceOn