• Title/Summary/Keyword: 흡착속도

Search Result 639, Processing Time 0.026 seconds

Effects of Acid Modification on Pb(II) and Cu(II) Adsorption of Bamboo-based Activated Carbon (대나무 활성탄의 산 개질이 납과 구리 이온의 흡착에 미치는 영향)

  • Lee, Myoung-Eun;Chung, Jae-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.24 no.1
    • /
    • pp.3-10
    • /
    • 2016
  • Effects of acid ($HNO_3$ and HCl) modification on the adsorption properties of Pb(II) and Cu(II) onto bamboo-based activated carbon (BAC) were investigated through a series of batch experiments. The carbon content increased and oxygen content decreased with acid treatment. $HNO_3$ induced carboxylic acids and hydroxyl functional groups while HCl added no functional group onto BAC. The pseudo-second order model better described the kinetics of Pb(II) and Cu(II) adsorption onto experimented adsorbents, indicating that the rate-limiting step of the heavy metal sorption is chemical sorption involving valency forces through sharing or exchange of electrons between the adsorbate and the adsorbent. The equilibrium sorption data followed both Langmuir and Freundlich isotherm models. The adsorption capacities of BAC were affected by the surface functional groups added by acid modification. The adsorption capacities were enhanced up to 36.0% and 27.3% for Pb(II) and Cu(II), respectively by the $HNO_3$ modification, however, negligibly affected by HCl.

Liquid Phase Adsorption of Activated Carbon Fibers (활성탄소섬유의 액상흡착)

  • Moon, Dong Cheul;Kim, Chang Soo;Park, Il Yeong;Kim, Mi Ran;Hong, Seung Soo;Lee, Kwang Ho;Lee, Chang Gi
    • Analytical Science and Technology
    • /
    • v.13 no.5
    • /
    • pp.573-583
    • /
    • 2000
  • Activated carbon fibers (ACFs) were prepared from various precursors of plantic, synthetic, and mixed fabrics of viscous rayon and cotton. Their adsorption performances of phenol and methylene blue in aqueous phase were evaluated through their adsorption isotherms, adsorption rates and breakthrough curves. The two adsorbates showed type I adsorption isotherm on ACFs. Adsorption rates to ACFs were 100 fold faster than to GAC. The effective diffusion coefficients of the adsorbates in ACFs were twenty fold greater than in GAC. The ACFs removed completely ten organic pollutants from a prepared water specimens through the 2nd column of a natural filtration method where 50 L of the water samples were treated.

  • PDF

Rates and Mechanism of Adsorption of Transition Metal Ions on Polystyrene Resins Supported Diethylenetriamine (디에틸렌트리아민을 지지시킨 폴리스틸렌수지에 대한 전이금속이온의 흡착속도와 메카니즘)

  • Kim, Sun-Deuk;Shin, Yun-Yeol;Kim, Chang-Su
    • Analytical Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.465-471
    • /
    • 1999
  • Chloromethylated polystyrene resins supported diethylenetriamine of linear and claw types have been prepared by the reaction of diethylenetriamine with chloromethylated polystyrene. The kinetics of adsorption of transition metal ions on polystyrene resins were measured by the limited-bath technique. This paper reports the results of the diffusion coefficients, entropies of activation, and free energies of activation. The ratedetermining step of the adsorption of transition metals on the resins is a process of diffusion through the particles.

  • PDF

활성탄에 의한 염소가스의 흡착특성

  • 이재의;윤세훈;김동현;김준형;오원진
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1998.05b
    • /
    • pp.397-402
    • /
    • 1998
  • 염소가스의 활성탄 흡착성능을 흡착평형과 flow system 두 단계의 흡착실험을 통하여 측정하였다. 활성탄은 surface area와 pore size distribution이 구별되는 세가지 이상의 시료를 선정하였고 활성탄의 표면특성에 따른 염소가스의 흡착관계를 검토하였다. Flow system에서는 염소가스를 500ppm의 농도(v/v in helium) 를 가지는 염소가스를 선택하였고 GC로 흡착경향을 분석하였다. 주어진 흡착탑(long bed)에서 흡착용량의 증가변화에 대한 흡착속도의 감소변화의 추이를 관찰하였으며 이로부터 염소가스 단일성분의 활성탄 흡착탑에 대한 흡착모델의 설계가 가능함을 알 수 있었다.

  • PDF

Understanding of Protein Adsorption Kinetics to Contact Lens Hydrogels (콘택트렌즈용 하이드로젤로의 단백질 흡착 반응속도 이해)

  • Kim, Hyun-Jae;Kim, Mira;Noh, Hyeran
    • Polymer(Korea)
    • /
    • v.38 no.2
    • /
    • pp.220-224
    • /
    • 2014
  • Protein adsorption kinetics was studied with the amount of proteins adsorbed to contact lens hydrogels over time scales. Hydroxyethylmethacrylate (HEMA) and silicone hydrogels were dipped in protein solutions (albumin or IgG) and adsorption amounts were measured over time scales. The amount of protein adsorbed to both hydrogel types increased rapidly in 10 min, and remained consistently in 90 min. Decreasing interfacial energetics was taken slowly up to an hour in spite of rapid diffusion of protein molecules. This is due to the fact that water deprivation from three dimensional interphase initially formed by protein diffusion took over an hour. Interpretation of adsorption kinetics on contact lens hydrogels was discussed with understanding of relationship between surface energy and protein adsorption capacity.

Removal of Cs by Adsorption with IE911 (Crystalline Silicotitanate) from High-Radioactive Seawater Waste (IE911 (crystalline silicotitanate) 의한 고방사성해수폐액으로부터 Cs의 흡착 제거)

  • Lee, Eil-Hee;Lee, Keun-Young;Kim, Kwang-Wook;Kim, Ik-Soo;Chung, Dong-Yong;Moon, Jei-Kwon
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.3
    • /
    • pp.171-180
    • /
    • 2015
  • This study was performed on the removal of Cs, one of the main high- radioactive nuclides contained in the high-radioactive seawater waste (HSW), by adsorption with IE911 (crystalline silicotitanate type). For the effective removal of Cs and the minimization of secondary solid waste generation, adsorption of Cs by IE911 (hereafter denoted as IE911-Cs) was effective to carry out in the m/V (ratio of absorbent weight to solution volume) ratio of 2.5 g/L, and the adsorption time of 1 hour. In these conditions, Cs and Sr were adsorbed about 99% and less than 5%, respectively. IE911-Cs could be also expressed as a Langmuir isotherm and a pseudo-second order rate equation. The adsorption rate constants (k2) were decreased with increasing initial Cs concentrations and particle sizes, and increased with increasing ratios of m/V, solution temperatures and agitation speeds. The activation energy of IE911-Cs was about 79.9 kJ/mol. It was suggested that IE911-Cs was dominated by a chemical adsorption having a strong bonding form. From the negative values of Gibbs free energy and enthalpy, it was indicated that the reaction of IE911-Cs was a forward, exothermic and relatively active at lower temperatures. Additionally, the negative entropy values were seen that the adsorbed Cs was evenly distributed on the IE911.

Analysis for Adsorption Equilibrium, Kinetic and Thermodynamic Parameters of Aniline Blue Using Activated Carbon (활성탄을 이용한 아닐린 블루의 흡착평형, 동역학 및 열역학 파라미터에 대한 해석)

  • Lee, Jong Jib
    • Korean Chemical Engineering Research
    • /
    • v.57 no.5
    • /
    • pp.679-686
    • /
    • 2019
  • Characteristics of adsorption equilibrium, kinetic and thermodynamic of aniline blue onto activated carbon from aqueous solution were investigated as function of initial concentration, contact time and temperature. Adsorption isotherm of aniline blue was analyzed by Langmuir, Freundlich, Redlich-Peterson, Temkin and Dubinin-Radushkevich models. Langmuir isotherm model fit better with isothermal data than other isotherm models. Estmated Langmuir separation factors ($R_L=0.036{\sim}0.068$) indicated that adsorption process of aniline blue by activated carbon could be an effective treatment method. Adsorption kinetic data were fitted to pseudo first order model, pseudo second order model and intraparticle diffusion models. The kinetic results showed that the adsorption of aniline blue onto activated carbon well followed pseudo second-order model. Adsorption mechanism was evaluated in two steps, film diffusion and intraparticle diffusion, by intraparticle diffusion model. Thermodynamic parameters such as Gibbs free energy, enthalpy and entropy for adsorption process were estimated. Enthalpy change (48.49 kJ/mol) indicated that this adsorption process was physical adsorption and endothermic. Since Gibbs free energy decreased with increasing temperature, the adsorption reaction became more spontaneously with increasing temperature. The isosteric heat of adsorption indicated that there is interaction between the adsorbent and the adsorbate because the energy heterogeneity of the adsorbent surface.

Applicability of Theoretical Adsorption Models for Studies on Adsorption Properties of Adsorbents(1) (흡착제의 흡착특성 규명을 위한 흡착모델의 적용성 평가(1)-흡착등온식을 이용한 평가)

  • Na, Choon-Ki;Han, Moo-Young;Park, Hyun-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.8
    • /
    • pp.606-616
    • /
    • 2011
  • The objectives of this study were to evaluate the applicability of adsorption models for adsorption properties of adsorbents. For this study, adsorption experiment of $NO_3^-$ ion using anion exchange resin has been investigated under adsorption equilibrium and kinetic in bach process. Adsorption equilibrium experiment were carried out that two conditions is change of adsorbate concentration and change of adsorbent weight. Experiment results have been analyzed by adsorption isotherm models, energy models and kinetic models. Under the condition of change of adsorbate concentration was best described by Sips and Redlich-Perterson isotherm models. However case of change of adsorbent weight was described by Langmuir isotherm models. It seems reasonable to assume that isotherm model was dominated by multiple mechanism according to experiment condition.

Evaluation of Removal Characteristics of Taste and Odor Causing Compounds using Meso-Porous Absorbent (메조공극 흡착제를 이용한 상수원수내 맛·냄새 유발물질 제거특성 평가)

  • Kim, Jong-Doo;Park, Chul-Hwi;Yun, Yeo-Bog;Lee, Dae-Sung;Kim, Hyo-Jeon;Kang, Seok-Tae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.1
    • /
    • pp.26-33
    • /
    • 2017
  • The objective of this study was to evaluate the characteristic of adsorption by using a meso-porous adsorbent (MPA), and investigate the removal efficiency of geosmin which taste and odor causing compounds in drinking water supplies through batch test. The results for the adsorption isotherm was analyzed by using the Langmuir equation and Freundlich equation, generally being applied. And the study showed that the both Langmuir and Freundlich equation explains the results better. Both of pseudo-first-order model and pseudo-second-order model were respectively applied for evaluation of kinetic sorption property of geosmin onto MPA. The adsorption experiment results using MPA showed that maximum adsorption capacity of MPA was lower 7 times than that of GAC, and adsorption rate of MPA was faster 11 times than that of GAC, on the basis of pseudo-first-order model. Therefore, it was determined that MPA was effectively able to remove geosmin in drinking water supplies in short EBCT condition, but regeneration cycle in MAP process was shorter than that in conventional process.

Adsorption Kinetic Constants for Basic Odorant on Pellet-type Adsorbents Recycled from Water-treatment Sludge (정수 슬러지를 재활용한 펠렛형 흡착제 상에서 염기성 악취 물질의 흡착속도상수)

  • Kim, Goun;Park, Nayoung;Bae, Junghyun;Jeon, Jong-Ki;Lee, Choul Ho
    • Applied Chemistry for Engineering
    • /
    • v.25 no.2
    • /
    • pp.167-173
    • /
    • 2014
  • The adsorption characteristics of the pellet-type adsorbent prepared from water treatment sludge for trimethylamine and ammonia were studied. The surface area and pore volume of the pellet-type adsorbent increased during calcination at $500^{\circ}C$. It was confirmed that the adsorbent prepared from water treatment sludge contained Br$\ddot{o}$nsted and Lewis acid sites. The breakthrough time of the adsorbent for both trimethylamine and ammonia was measured at different adsorbent weights and linear velocities while maintaining constant amounts of trimethylamine and ammonia. The kinetic saturation capacity and the adsorption rate constant for trimethylamine and ammonia were determined at different linear velocities by using the Wheeler equation. It was found that the kinetic saturation capacity and the adsorption rate constant were dependent on the linear velocity. An experimental equation could be derived to predict the breakthrough time of the adsorbent prepared from water treatment sludge for trimethylamine and ammonia at different adsorption conditions.