Browse > Article
http://dx.doi.org/10.7317/pk.2014.38.2.220

Understanding of Protein Adsorption Kinetics to Contact Lens Hydrogels  

Kim, Hyun-Jae (Department of Chemical and Biomolecular Engineering, Yonsei University)
Kim, Mira (Department of Optometry, Seoul National University)
Noh, Hyeran (Department of Optometry, Seoul National University)
Publication Information
Polymer(Korea) / v.38, no.2, 2014 , pp. 220-224 More about this Journal
Abstract
Protein adsorption kinetics was studied with the amount of proteins adsorbed to contact lens hydrogels over time scales. Hydroxyethylmethacrylate (HEMA) and silicone hydrogels were dipped in protein solutions (albumin or IgG) and adsorption amounts were measured over time scales. The amount of protein adsorbed to both hydrogel types increased rapidly in 10 min, and remained consistently in 90 min. Decreasing interfacial energetics was taken slowly up to an hour in spite of rapid diffusion of protein molecules. This is due to the fact that water deprivation from three dimensional interphase initially formed by protein diffusion took over an hour. Interpretation of adsorption kinetics on contact lens hydrogels was discussed with understanding of relationship between surface energy and protein adsorption capacity.
Keywords
protein adsorption kinetics; hydrogels; tear proteins; contact lens; surface energy;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 R. Varoqui and E. Pefferkorn, J. Colloid Interface Sci., 109, 520 (1986).   DOI
2 N. Barnthip, H. Noh, E. Leibner, and E. A. Vogler, Biomaterials, 29, 3062 (2008).   DOI   ScienceOn
3 J. Feder and I. Giaever, J. Colloid Interface Sci., 78, 144 (1980).   DOI   ScienceOn
4 S. Slomkowski, S. Sosnowski, and E. Przerwa, CR Chim., 6, 1393 (2003).   DOI
5 A. Krishnan, Y. Liu, P. Cha, D. L. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006).   DOI   ScienceOn
6 A. Krishnan, J. Sturgeon, C. A. Siedlecki, and E. A. Vogler, J. Biomed. Mater. Res., 68A, 544 (2004).   DOI
7 R. Miller, Colloid Polym. Sci., 259, 375 (1981).   DOI
8 S. Jeon and H. Noh, Polymer(Korea), 36, 338 (2012).
9 H. Noh and E. A. Vogler, Biomaterials, 27, 5801 (2006).   DOI   ScienceOn
10 J. M. Gonzalez-Meijome, A. Lopez-Alemany, J. B. Almeida, M. A. Parafita, and M. F. Refojo, J. Biomed. Mater. Res. B. Appl. Biomater., 83, 512 (2007).
11 A. Krishnan, Y.-H. Liu, P. Cha, D. Allara, and E. A. Vogler, J. R. Soc. Interface, 3, 283 (2006).   DOI
12 A. Fick, London Edinburgh Dublin Philos Mag., J. Sci., 10, 30 (1855).
13 E. Vogler, Biomaterials, 33, 1202 (2012).
14 E. Pefferkorn, A. Carroy, and R. Varoqui, Macromolecules, 18, 2252 (1985).   DOI
15 E. Guggenheim, Thermodynamics: An Advanced Treatment for Chemists and Physicists, Wiley, New York, 1967.
16 E. A. Volger, "Interfacial chemistry in biomaterials science", in Wettability, J. Berg, Editor, Marcel Dekker, New York, USA, Vol 5, p 183 (1993).
17 E. A. Vogler, Adv. Colloid Interface Sci., 74, 69 (1999).
18 H. Noh, S. Yohe, and E. A. Vogler, Biomaterials, 29, 2033 (2006).
19 P. Parhi, A. Golas, N. Barnthip, H. Noh, and E. A. Vogler, Biomaterials, 30, 6814 (2009).   DOI   ScienceOn
20 H. Noh and E. A. Vogler, Biomaterials, 28, 405 (2007).   DOI   ScienceOn
21 J. Brash and D. Lyman, J. Biomed. Mater. Res., 3, 175 (1969).   DOI
22 K. L. Menzies and L. Jones, Optom. Vis. Sci., 88, 493 (2011).   DOI
23 B. Holden, D. Sweeney, A. Vannas, K. Nilsson, and N. Efron, Invest. Ophthalmol. Vis. Sci., 26, 1489 (1985).
24 P. C. Nicolson and J. Vogt, Biomaterials, 22, 3273 (2001).   DOI   ScienceOn
25 G. Sagvolden, I. Glaever, and J. Feder, Langmuir, 14, 5984 (1998).   DOI
26 K. L. Menzies, In vitro Analysis of Wettability and Physical Properties of Blister Pack Solutions of Hydrogel Contact Lenses, University of Waterloo, pp. 1-251 (2010).
27 A. Krishnan, Y.-H. Liu, P. Cha, D. Allara, and E. A. Vogler, Biomaterials, 27, 3187 (2006).   DOI   ScienceOn
28 A. Krishnan, J. Sturgeon, C. Siedlecki, and E. A. Vogler, Langmuir, 19, 10342 (2003).   DOI   ScienceOn
29 M. C. Lensen, V. A. Schulte, J. Salber, M. Diez, F. Menges, and M. Moller, Pure. Appl. Chem., 80, 2479 (2008).