• Title/Summary/Keyword: 흙막이 구조

Search Result 129, Processing Time 0.022 seconds

Influence of Near Field Blasting Vibration to Earth Retaining Wall (근거리 발파진동이 흙막이 구조물에 미치는 영향)

  • Whang, Hyun-Ju;Lee, Sang-Pil;Yang, Hyung-Sik
    • Tunnel and Underground Space
    • /
    • v.18 no.2
    • /
    • pp.118-124
    • /
    • 2008
  • Allowable level of blasting vibration for earth retaining wall was examined in this study. Blasting vibration was measured at near field blasting to evaluate the influence of the blasting work to earth retaining wall and rear ground. Although small scale blasting with $0.5{\sim}2.0kg$ explosives per round merely influenced to the structure and ground, but it was suggested to blast at the distance of twice the least burden considering the block movement.

Stability Analysis Techniques of Bracing Structure in the Hard Clay Ground According to the Variation of the Groundwater Level at the Trench Excavation (경질점성토 지반에서 Trench 굴착시 지하수위 변동에 따른 가설구조체 안정해석 기법)

  • Heo, Chang-Hwan;Seo, Sung-Tag;Kim, Hee-Duck;Jee, Hong-Kee
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.3 no.2 s.9
    • /
    • pp.99-110
    • /
    • 2003
  • In this study, lightening material weight and normalizing structure of preventing system of landslide soil-rock in trench excavation was tried with focusing in safety construction availability and workability. In other words, risk estimate, safety management method investigation, applicability of bracing material and mechanical stability of bracing structure was studied. From these result, structural stability and structural analysis of light weight bracing structure was carried out with common structural analysis program, for examining movement mechanism of bracing structure and normalization of standard. The result are summarized as following. (1) Mechanical ability of bracing members and soil pressure parameter acting to member for ensuring mechanical propriety of bracing structural and useful of new material considering soil mechanics boundary were proposed. Also theory and method of analysis of bracing structural were proposed. (2) As a result of the structure analysis of geographical profile for light pannel used FRP as hard clay mechanical characteristics(bending moment, shear force, axial force) of panel were changed according to groundwater level and it is proved that the result of mechanical analysis is within allowable stress. Thus, light pannel is available for bracing structure in trench excavation.

Application of Prefabricated Retaining Walls with Steel Lagging (강재 요소를 적용한 조립식 흙막이 벽체에 관한 연구)

  • Hong, Jong woo;Choi, Jae Soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.6
    • /
    • pp.1277-1285
    • /
    • 2015
  • It has been known that the conventional retaining wall system with timber lagging and H pile has several problems such as the irregular gap between H-piles, cutting or adding to standard timber, back fill over first step excavation, and especially break-down accident at the disjoint of wall system. In the practical excavation, these problems may lead to worker's accident and the inefficiency of construction economy. To solve the above problems, a new method using prefabricated retaining wall was proposed and verified. The characteristics of the new method is to replace timber wall as free-sliding steel-lagging and connector. To check its verification and application, laboratory tests such as bending strength, tensile strength, and fatigue strength were carried out. Also, a pilot test in the field and numerical simulations under various ground conditions were performed. From the researches, it is found that the prefabricated retaining wall plate can be superior to the conventional timber lagging plate in the strength. It is also found that the proposed methods can be effective in the reuse of retaining wall plate and safe in the disjoint of wall system. Finally, it is desired that the proposed method will be effective in the reduction of the imported timbers and helpful in the safety of retaining wall construction.

A Study for Safety Management on the Basis of Lateral Displacement Rates of Anchored In-situ Walls by Collapse Case Histories (붕괴 사례를 통한 앵커지지 가설흙막이벽체의 수평변위속도에 의한 안전관리 연구)

  • Chung, Dae-Seouk;Lee, Yong-Beom
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.367-378
    • /
    • 2018
  • Purpose: The objective of this study is to present a reasonable safety management of the anchored in-situ wall systems constructed in the ground conditions consisting of multi-layered soils underlain by bedrocks in the urban area of Korea. Method: Field measurements collected from collapse case histories with deep excavations were analyzed for the safety management of the wall systems supported by the earth anchors in terms of lateral displacement rates. Results: The average maximum lateral displacement rate in a collapsed zone of the in-situ wall significantly increased upon the completion of the excavation. Particularly, the collapse of the in-situ wall system due to the sliding occurring along the discontinuities of the rock produced a considerably large lateral displacement rate over a relatively short period. Conclusion: For predicting and preventing the collapse of the wall system during or after the excavation work, the utilization of the safety management criteria of the in-situ wall system by the lateral displacement rate was found to be much more reasonable in judging the safety of earthworks than the application of the quantitative management criteria which have been commonly used in the excavation sites.

Safety Management of the Retaining Wall Using USN Sonar Sensors (USN 초음파 센서를 활용한 흙막이 안전관리)

  • Moon, Sung-Woo;Choi, Eun-Gi;Hyun, Ji-Hun
    • Korean Journal of Construction Engineering and Management
    • /
    • v.12 no.6
    • /
    • pp.22-30
    • /
    • 2011
  • In the construction operation, foundation work should be done in advance for the building structure to be installed. This foundation work include a number of activities such as excavation, ground water prevention, piling, wale installation, etc. Caution should be taken in the operation because the dynamics of earth movement can cause a significant failure in the temporary structure. The temporary structure, therefore, should be constantly monitored to understand its behavior. This paper introduces the USN-based monitoring system to automatically identify the behavior of the temporary structure in addition to visual inspection. The autonomous capability of the monitoring system can increase the safety in the construction operation by providing the detailed structural changes of temporary structures.

The Analysis of the Important Problems on Designing and Constructing Earth Retaining Structures (지반굴착 흙막이 구조물 설계 및 시공시 중요문제점 분석)

  • Lee, Song;Kim, Ju-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.2
    • /
    • pp.167-174
    • /
    • 2002
  • Earth retaining structure is constructed structure in order to construct a multistoried building, the subway, a subterranean downtown for effective use and obtainments of the limited ground. Recently, many kinds of research have been actively developed for a standardization and a database on designing and constructing of bridge, tunnel, road. With the works of database construction of that, many kinds of data with respect to statistics is cumulated. However, Database work of designed and constructed earth retaining structure in the construction field is wholly lacking and lagged behind in the works of database construction. This paper suggested classification system on indication data in connection with designing and constructing earth retaining structures a hundred fields. On the basis of that, code work with classification system was practised and DB program of indication data in connection with designing and constructing earth retaining structures was developed.

Numerical Analysis of Retaining Wall Considering Supporting Load of Adjacent Retaining Wall (인접 흙막이 구조물의 지보재 하중을 고려한 가시설의 수치해석)

  • Yoo, Chanho;You, Jaemin;Lee, Seungjoo;Hwang, Jungsoon;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.1
    • /
    • pp.31-36
    • /
    • 2018
  • Recently, as the building construction works have been activated, the environment in which the excavation work is proceeding in parallel with the existing structure and the adjacent excavation work is increasing. However, there is not a lot of research on this. In this study, numerical analysis was carried out for interaction analysis between former excavation construction and follow-up excavation on two excavation retaining structures in parallel with excavation. As a result of numerical analysis, if the supporting load of strut is not considered, it was analyzed that the displacement distribution in the structure can be underestimated and acting stress of strut is overestimated. It was analyzed that the support stress causes by the former excavation should be considered in order to simulate the actual behavior characteristic.

The Lateral Earth Pressure Distribution of the Earth Retaining Structure Installed in Colluvial Soil (붕적토에 설치된 흙막이구조물의 측방토압분포)

  • Hong, Won-Pyo;Yea, Geu-Guwen
    • The Journal of Engineering Geology
    • /
    • v.18 no.4
    • /
    • pp.433-437
    • /
    • 2008
  • It's essential to build an earth retaining structure at the beginning and end point of a tunnel constructed in a colluvium area. A large scale of colluvial soil may cause a problem to the stability of the excavation ground. An excavation in colluvium has different behavior characteristics from those in a sandy soil due to unstable elements and needs counter measures for it. There are few systematic research efforts on the behavior characteristics of an earth retaining structure installed in colluvial soil. Thus this study set out to collect measuring data from an excavation site at the tunnel pit mouth in colluvium and set quantitative criteria for the safety of an earth retaining structure. After comparing and analyzing the theoretical and empirical earth pressure from the measuring data, the lateral earth pressure distribution acted on the earth retaining wall was suggested.

Performance of Innovative Prestressed Support Earth Retention System in Urban Excavation (도심지 굴착에 적용된 IPS 흙막이 구조물의 현장거동)

  • Kim Nak Kyung;Park Jong Sik;Jang Ho Joon;Han Man Yop;Kim Moon Young;Kim Sung Bo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.2
    • /
    • pp.27-36
    • /
    • 2005
  • The performance of innovative prestressed support (IPS) earth retention system applied in urban excavation was presented and investigated. The IPS wales provide a high flexural stiffness to resist the bending by lateral earth pressure, and the IPS wales transfer lateral earth pressure to Corner struts. The IPS wale provides a larger spacing of support, economical benefit, construction easiness, good performance, and safety control. In order to investigate applicability and stability of the IPS earth retention system, the IPS system was instrumented and was monitored during construction. The IPS system applied in urban excavation functioned successfully. The results of the field instrumentation were presented. The measured performances of the IPS earth retention system were investigated and discussed.

Analysis of the Correlation between the velocity speed of High-Speed Railways and the Suppressing Effect of lateral Displacement of retaining wall according to the Arrangement of Stabilizing Piles (억지말뚝의 배치에 따른 흙막이의 수평변위 억제효과와 고속철도의 속도와의 상관성 분석)

  • Son, Su-Won;Im, Jong-Chul;Seo, Min-Su;Hong, Seok-Woo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.1
    • /
    • pp.1-8
    • /
    • 2021
  • In urban areas, structures are installed deep underground in the lower part of the structure to utilize space. Therefore, a retaining wall is used to prevent earth pressure from the ground when constructing a structure. Due to the development of construction technology, retaining wall applied to excavation work are used to prevent danger such as falling rocks and landslides in temporary facilities when construction or retaining walls are installed. In general, the application of a retaining wall to a temporary facility during the embankment construction is the case of expanding an existing roads or railways. Therefore, it is necessary to study the retaining wall applied to the embankment construction such as the double-track site of the high-speed railway. In this study, two types of common one row H-pile retaining wall and two types of IER retaining wall were analyzed, and the stability of the retaining wall applied to the construction of double-track of the high-speed railway was analyzed. The earth retaining wall is a construction method that combines forced pile applied to the stabilization of the slope with the wall of the earth retaining wall. As a result of the analysis, the IER retaining wall had maximum lateral displacement of 19.0% compared to the type with H-plie installed only in the front while dynamic load was applied. In addition, the slower the speed of high-speed railway, the more displacement occurred, and the results show that more caution is needed when designing the ground in low-speed sections.