• Title/Summary/Keyword: 휨-전단거동

Search Result 354, Processing Time 0.03 seconds

The Effectiveness of Steel Fibers as Shear Reinforcement (강섬유를 사용한 전단보강의 효율성)

  • Kal, Kyoung-Wan;Lee, Deuck-Hang;Bang, Yong-Sik;Cho, Hae-Chang;Kang, Ju-Oh;Kim, Kang-Su
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.59-60
    • /
    • 2009
  • Steel fibers are recently well recognized for good composite/strengthening materials because of their ductile behavior and good performance on crack control and shear behavior compared to concrete materials. Especially, the great improvement in shear strength by steel fibers led researchers to be involved in many experimental studies. However, our understanding on the complex shear behavior of the steel fiber reinforced concrete(SFRC) members are still very limited, and the fundamental test data are also not enough. In this study, therefore, 4 SFRC specimens were fabricated and tested, from which the effectiveness of steel fibers as shear reinforcement were evaluated. The test results shows that the shear strength of SFRC members increases as the amount of steel fibers increases.

  • PDF

Shear Behaviour of RC Beams Strengthened by Multi directional channel-type FRP Plate (다방향 채널형 FRP판으로 보강된 철근콘크리트 보의 전단거동)

  • Han, Jae-Won;Hong, Ki-Nam;Han, Sang-Hoon;Kwon, Yong-Kil
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.173-176
    • /
    • 2008
  • The aim of this paper is to clarify the shear behavior of RC beams strengthened with channel-type Fiber Reinforced Polymer(FRP) plates. Fourteen RC beams were specifically designed. All the beams were tested under four point bending and extensively instrumented to monitor strains, cracking, load capacity and failure modes. The structural response of all beams is then critically analyzed in terms of deformability, strength and failure processes. It is shown that with channel-type Fiber Reinforced Polymer(FRP) plates, a brittle debonding failure of beams bonding FRP in the concrete surface can be transformed to an almost ductile failure with well-defined enhancement of structural performance in terms of both deformation and strength.

  • PDF

An Evaluation of Flexural Performance of Composite Beam with Ultra High Performance Concrete Deck and Inverted T-Shaped Steel Girder (초고강도 콘크리트 바닥판과 역T형 강재 합성보의 휨 성능 평가)

  • Yoo, Sung-Won;Joh, Chang-Bin;Choi, Kwang-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.1
    • /
    • pp.64-71
    • /
    • 2016
  • In this paper, when the composite beam is made with UHPC deck and steel girder, the steel girder takes the form of the inverted-T shape without top flange because of high strength and stiffness of UHPC deck. There is no evaluation by experiment and analysis about the shear connector behavior on the web of steel girder and flexural behavior of inverted-T shape composite beam. By this reason, this study compares between experiment and analysis by using tension softening model of UHPC on the basis of flexural test results of 16 members considering compressive strength of UHPC, spacing of stud and thickness of deck as variables. The results of tensile strength of UHPC by inverse analysis were 6.57 MPa(in case of 120 MPa) and 9.57 MPa(in case of 150 MPa). In case of the test members with small stud spacing, the results of analysis and test were close clearly, and the test members with thick deck and low UHPC compressive strength also similar, but effects were small. As it compared between analysis and experiment totally, the results of analysis and experiment agree well. So the tension softening model of UHPC is reasonably reflected on the real behavior of composite beam of UHPC.

An Evaluation of Applicable Feature of Structural Member Using High Volume Fly-Ash Concrete (다량치환된 플라이애시 콘크리트의 구조부재 적용성 평가)

  • Kim, Gyung-Tae;Yoo, Sung-Won
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • Recently, numerous studies were dedicated on the HVFA concrete using high volume CCPs. In initial studies, main topics are dependent on material properties of HVFA concrete, but several studies were dedicated on the structural behavior of HVFA concrete such as elasticity modulus, stress-strain relationship and structural behavior nowadays. Therefore, in this paper, on the basis of recent studies on the structural behavior, 2 large-scale test members were manufactured with 7.5m span length and fly ash replacement ratio 50%, concrete compressive strength 50MPa in order to apply to the practical structure and evaluate possibility of application. From the test results, although there were small differences between test results and existing research results on the stress-strain relationship, the application to practical structure is not hard. In flexural test, as the produced pattern of displacement and strain were similar to those of general concrete without fly ash, the difference between 50% fly ash concrete and general concrete is very small. And the concrete shear strength obtained by test was similar to that of design code, so existing design code will be also able to apply.

A Study of New Approach on Elasto-Plastic Analysis of shell Structures (쉘구조물의 탄소성해석에 관한 새로운 해석법의 연구)

  • Kwun Taek Jin;Park Kang Geun
    • Journal of the Korean Professional Engineers Association
    • /
    • v.20 no.3
    • /
    • pp.5-14
    • /
    • 1987
  • 연속체의 해석에 있어서, 특별한 경우를 제외하고는, 구조물의 개략적인 거동을 파악해야 될 경우가 종종 있다. 이러한 요구에 부응하기 위해서 강체요소법(Rigid Element Method)이라 불리우는 새로운 해석법이 개발되었다. 강체요소법은 원래 평정연구실에서 벽식프리캐스트 철근콘크리트 구조물의 탄소성해석을 하기 위해서 개발된 해석법에 착안하여, 내수벽과 같은 연속체에 적용함으로서 시작된 수치해석법이다. 그 후 저자들은 도통쉘, 구형쉘 혹은 이들이 조합된 쉘구조물에 적용할 수 있도록 개발 확장하였다. 강체요소법의 기본개념은 연속체의 분해된 각 요소를 강체(rigid body)라고 가정하고, 각 요소들은 요소의 강성으로 치환된 가상스프링으로 서로 연결되어 있다고 가정하여, 이 가상스프링의 거동을 평가함으로서 전체구조물의 거동을 파악하는 해석법이다. 이때 요소의 주변에 취해진 스프링은 해석을 단순화하기 위해서 축력, 면내전단력 및 면외전단력만을 전달한다고 가정하고, 요소의 강체변위(자유도)는 요소내의 임의의 한 점에서 취하며, 이 점에서의 강체변위(rigid displacements)는 요소의 주변에 취해진 스프링을 통하여 다른 요소로 전달된다. 상기와 같은 강체요소법의 개념을 연속체의 탄성 및 탄소성해석에 적용하면, 해석적 개념이 단순할 뿐만 아니라 구조물 전체의 자유도수를 대폭 줄여 컴퓨터 계산시간을 절약할 수 있는 잇점이 있고, 거시적인 모델(macroscopic modeling)과 미시적인 모델 (microscopic modeling)의 중간적인 성격을 가지기 때문에 구조물의 파괴상황에 대해서도 그 개략을 파악할 수 있다. 본 논문에서는 강체요소법을 보다 일반화된 해석법으로 개발, 확장하기 위해서 종전에 단층스프링시스템(single-layer spring system)으로 해석이 어려웠던 문제점들을 보완한 복층프링시스템(double-layer spring system)을 사용함으로서 휨, 비틀림의 효과를 파악할 수 있는 이론적 개념을 적용한 새로운 구요소, 원통요소 및 평면요소를 개발하고, 이러한 강체요소들의 적합매트릭스의 유도 및 해석저긴 방법을 정식화하였다. 또 휨, 비틀림 및 전단력의 효과를 고려한 사각형원통요소 및 능형원 통요소를 이용하여 원통쉘의 탄성 및 탄소성해석할 수 있는 프로그램을 개발하고, 이 프로그램으로 캔틸레버로된 연속형철근콘크리트 원통쉘의 탄성 및 탄소성해석에 적용하여 구조물의 거동에 관한 수치해석의 결과, 즉 내력의 분포, 균열의 진전, 파괴의 상황 및 변형의 상태 등을 파악해 보았다.

  • PDF

An Experimental Study on The Behavior of Reinforced Concrete Beams with Poor-Compacted Concrete in Tensile Steel Zone (인장철근영역 콘크리트 다짐불량에 따른 철근콘크리트 보의 거동)

  • Park, Hoon-Gyu;An, Young-Ki;Jang, Il-Young;Park, Byung-Hee
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.1
    • /
    • pp.143-150
    • /
    • 2008
  • There is possibility of poor-state concrete filling condition due to segregation of aggregate and paste in reinforced concrete structure. This study was conducted to evaluate the flexural and shear behavior of reinforced concrete beams with different concrete filling conditions. Different concrete filling conditions were intentionally made such that the specimens was soundly cast to obtain the perfect concrete filling condition and cast in such a way that up to the longitudinal tensile reinforcement from the top, good concrete was filled while poor concrete was poured for the bottom part to simulate the poor strength, workability and unsatisfactory compaction. The test results indicate that have no effect of concrete filling conditions on the yielding strength of structures. But, have a great influence on the flexural ductility and shear capacity of structures.

Flexural and Shear Behavior of Reinforced Dual Concrete Beam (철근 이중 콘크리트 보의 휨 및 전단 거동)

  • Park Tae-Hyo;Park Jae-Min;Kim Hee-Dae
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.3 s.87
    • /
    • pp.401-409
    • /
    • 2005
  • In this study, reinforced dual concrete beam (RDC beam) composed of steel fiber reinforced concrete (SFRC) in the tension part and normal strength concrete (NSC) in the compression and remaining part is proposed. It is the epochal structural system that improves the overall structural performances of beam by partially superseding the steel fiber reinforced concrete in the lower tension part of conventional reinforced concrete beam (RC beam). Flexural and shear tests are performed to prove the structural excellence of RDC beam in comparison with RC beam. An analytical method is proposed to understand the flexrual behavior and is compared to experimental results. And for shear behavior, experimental results are compared to empirical equations predicting the ultimate shear strength of full-depth fiber reinforced concrete beam to examine the behavior of RDC beam under shear. From this studies, it is proved that RDC beam has more superior structural performance than RC beam, and the analytical method for flexural behavior agrees well with experimental results, and the partial-depth fiber reinforcements have no noticeable effect on ultimate shear strength but it is considerably effective to control and prevent evolutions of crack.

Experimental Study on Structural Behavior of Inverted Multi-Tee Precast Slabs Manufactured by Slipformer (슬립폼 방식으로 제작된 역리브 프리캐스트 슬래브의 구조거동에 대한 실험적 연구)

  • Choi, Seokdong;Kim, Min-Seok;Kim, Kang Su;Hong, Sung Yub;Han, Sun-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.3
    • /
    • pp.80-86
    • /
    • 2020
  • In the fabrication process of inverted multi-tee (IMT) slabs, concrete has to be poured twice due to its shape, which is a huge disadvantage as a precast member. To overcome this, a new technique for manufacturing IMT slabs using a slipform method has been recently developed. In this study, flexural and shear tests were carried out to investigate the structural performances of inverted multi-tee (IMT) slabs manufactured using slipform method. To this end, one flexural specimen and two shear specimens with topping concrete were fabricated, and their failure modes and crack patterns, and the slips that occurred between the precast slab and topping concrete were measured and analyzed in detail. In addition, the flexural and shear strengths of the specimens were evaluated by utilizing the structural design code, and a shear strength estimation method, which is suitable for composite IMT slabs with different concrete properties, was proposed for practical design. The IMT slab satisfied the nominal flexural strength calculated by the current design code, and the proposed method provided a good estimation of the shear strength of the specimens.

Cyclic Local Buckling Behavior of Steel Members with Web Opening (유공 강구조 부재의 반복 국부좌굴거동)

  • Lee, EunTaik;Ko, KaYeon;Kang, JaeHoon;Chang, KyoungHo
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.4 s.65
    • /
    • pp.423-433
    • /
    • 2003
  • Many study have been performed to describe the elastic and inelastic behavior of H-shaped beams with web openings that generally concentrated on the monotonic loading condition and concentric web opening. The findings of the studies led Darwin to propose formulas for the design of beams with web openings considering local buckling. While the formulas are simple and useful in real situation, more studies arc needed on their cyclic loading condition. In this experimental study, 12 H-shaped beams with web openings under cyclic loading condition were investigated. The dimension criteria based on the formulas proposed by Darwin were examined. The suitability of existing design formulas and the effects of plastic hinges on beams with web openings and of local buckling around web openings on the beam strength under cyclic loading were also studied. This was done by observing their behavior with various dimensional openings, eccentric per cent, and stiffeners.

An Experimental Study on the Stirrup Effectiveness in Reinforced Concrete Beams (철근콘크리트보의 스터럽 효과에 관한 실험적 연구)

  • Lee, Young-Jae;Lee, Yoon-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.1
    • /
    • pp.205-215
    • /
    • 2005
  • The main objective of this study is to investigate the behavior of NSC and HSC beams with stirrups. Main variables were the concrete compressive strength and amount of vertical stirrups. A total of 24 beams was tested; 4 beams without web reinforcement and 20 beams with web reinforcement in the form of vertical stirrups. Main variables were 2 different compressive strengths of concrete of 26.9MPa and 63.5MPa, 5 different spacing of stirrups of 200, 150, 120, 100 and 90mm. Therefore, the results were compared with the strengths predicted by the equations of ACI code 318-99 and other researchers. The shear reinforcement ratio, where the test beams were failed simultaneously under flexure and shear, were $0.63{\rho}_{vmax}$ for NSC beams and $0.53{\rho}_{vmax}$ for HSC beams, respectively. The ACI code equation was found to be very conservative for shear design.