• Title/Summary/Keyword: 휨 변형

Search Result 663, Processing Time 0.027 seconds

Relation of Deflection of Prestressed Concrete Members to Unbonded Tendon Stress and Effects of Various Parameters (비부착 프리스트레스트 보강재를 갖는 PSC 부재의 변위와 프리스트레스트 보강재 응력의 상관관계 및 변수별 효과)

  • 문정호;임재형;이창규
    • Journal of the Korea Concrete Institute
    • /
    • v.14 no.2
    • /
    • pp.171-179
    • /
    • 2002
  • This paper is a part of research series for the verification of the proposed Moon/Lim design equation. An analytical study was performed to examine the relation between the flexural behavior and the unbonded tendon stress of PSC members. The strain compatibility assumption was used in this study since previous studies showed that the stress variations of tendon had a close relation with the member displacements. The proposed equation has been developed with the same assumption of strain compatibility. Therefore the analytical procedure with the strain compatibility assumption was developed to compute the member displacements of previous tests. Then the analytical results were compared with tests results. The comparison showed that the strain compatibility assumption can be properly applicable to the design equation. Based on the analytical results, the relation between the tendon stress and the member flexural behavior at ultimate was examined. A parametric study also carried out with regard to the member displacements. As results, the parameters used for the proposed equation were proven to be proper for the computation of tendon stress.

Shear Behavioral Model based on Shear Deformation Compatibility in Reinforced Concrete Members (전단변형적합조건에 기반한 철근콘크리트 부재의 전단 해석 모델)

  • Kim, Woo;Rhee, Chang-Shin;Jeong, Jae-Pyong
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.3 s.93
    • /
    • pp.379-388
    • /
    • 2006
  • This paper presents a model for evaluating the contribution by arch action to shear resistance in shear-critical reinforced concrete beams. Based on the relationship between shear and bending moment in beams subjected to combined shear and bending, the behavior of a beam is explicitly divided into two base components of the flexural action and the tied arch action. The compatibility condition of the shear deformation that deviates from Bernoulli bending plane is formulated utilizing the smeared truss idealization with an inclined compression chord. The Modified Compression Filed Theory is employed to calculate the shear deformation of the web, and the relative axial displacements of the compression and the tension chord by the shear flow are also calculated. From this shear compatibility condition in a beam, the shear contribution by the arch action is numerically decoupled. Then the validity of the model is examined by applying the model to some selected test beams in literatures. The results may confirm the rationale of the proposed behavioral model.

Strain-Based Shear Strength Model for fiber Reinforced Concrete Beams (섬유보강 콘크리트 보를 위한 변형 기반 전단강도모델)

  • Choi Kyoung-Kyu;Park Hong-Gun;Wight James K.
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.6 s.90
    • /
    • pp.911-922
    • /
    • 2005
  • A theoretical study was performed to investigate the behavioral chracteristics and shear strength of fiber reinforced concrete slender beams. In the fiber reinforced concrete beam, the shear force applied to a cross section of the beam was resisted by both compressive zone and tensile zone. The shear capacity of the compressive zone was defined addressing the interaction with the normal stresses developed by the flexural moment in the cross section. The shear capacity of the tensile zone was defined addressing the post-cracking tensile strength of fiber reinforced concrete. Since the magnitude and distribution of the normal stresses vary according to the flexural deformation of the beam, the shear capacity of the beam was defined as a function of the flexural deformation of the beam. The shear strength of the beam and the location of the critical section were determined at the intersection between the shear capacity and shear demand curves. The proposed method was developed as a unified shear design method which is applicable to conventional reinforced concrete as well as fiber reinforced concrete.

Warpage Analysis during Fan-Out Wafer Level Packaging Process using Finite Element Analysis (유한요소 해석을 이용한 팬아웃 웨이퍼 레벨 패키지 과정에서의 휨 현상 분석)

  • Kim, Geumtaek;Kwon, Daeil
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.25 no.1
    • /
    • pp.41-45
    • /
    • 2018
  • As the size of semiconductor chip shrinks, the electronic industry has been paying close attention to fan-out wafer level packaging (FO-WLP) as an emerging solution to accommodate high input and output density. FO-WLP also has several advantages, such as thin thickness and good thermal resistance, compared to conventional packaging technologies. However, one major challenge in current FO-WLP manufacturing process is to control wafer warpage, caused by the difference of coefficient of thermal expansion and Young's modulus among the materials. Wafer warpage induces misalignment of chips and interconnects, which eventually reduces product quality and reliability in high volume manufacturing. In order to control wafer warpage, it is necessary to understand the effect of material properties and design parameters, such as chip size, chip to mold ratio, and carrier thickness, during packaging processes. This paper focuses on the effects of thickness of chip and molding compound on 12" wafer warpage after PMC of EMC using finite element analysis. As a result, the largest warpage was observed at specific thickness ratio of chip and EMC.

An Experimantal Study on the Flexible Capacity of New Shape Flat Deck Plate(ACE-DECK) for Using Composite Slabs Systems. (신형상의 합성용 평데크플래이트(ACE-DECk)의 휨성능에 대한 실험적 연구)

  • Oh, Sang-Hoon;Jang, In-wha;Bae, Kyu-woong;Heo, Byung-wook;Yang, Myung-sook
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.265-277
    • /
    • 2001
  • This paper present a study on the flexural behavior of composite slabs using the flat-type profiled(ACE-DECK) steel deck plate which are developed recently. Forty eight composite slabs with different thickness, span, shear span and deck profile were tested to evaluate the flexural capacity and compared to the existing traperzodial deck profiles (KEM, ALPHA-DECK) According to the experiment results, flat-type profiled steel deck plate indicates more excellent capacity than existing traperzodial deck profiles in strength, stiffness, and ductility. The equation proposed by ASCE code for the effective moment of inertia are more acceptable than the equation proposed by ACI code. Thus, in this paper, test results are summarized by strength, stiffness, and deformation capacity for the specimens.

  • PDF

Flexural Behavior of Reinforced Concrete Beam Strengthened with Carbon Fiber Sheet under Load History (하중이력에 따른 탄소섬유로 보강된 RC보의 휨 거동)

  • Yoon, Tae-Ho;Kim, Jin-Sang
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.1
    • /
    • pp.845-852
    • /
    • 2015
  • This study examined the flexural strength of CFS reinforced concrete beams with various load histories. The RC beams to be reinforced by CFS have undergone various loading histories but neglecting the loading history results in a few problems in structural safety and cost. Structural behavior of CFS-strengthened RC beams were analyzed considering the strain status of RC beams under loads at the time of CFS strengthening. Nonlinear section analysis showed that the flexural strength of CFS-strengthened RC beams depends on the load history of the RC beams. From the result of this analysis, the flexural strength of a CFS-strengthened concrete beam is affected considerably by the load history and should be considered in CFS reinforcement.

Thermal Warpage Behavior of Single-Side Polished Silicon Wafers (단면 연마된 실리콘 웨이퍼의 열에 의한 휨 거동)

  • Kim, Junmo;Gu, Chang-Yeon;Kim, Taek-Soo
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.27 no.3
    • /
    • pp.89-93
    • /
    • 2020
  • Complex warpage behavior of the electronic packages causes internal stress so many kinds of mechanical failure occur such as delamination or crack. Efforts to predict the warpage behavior accurately in order to prevent the decrease in yield have been approached from various aspects. For warpage prediction, silicon is generally treated as a homogeneous material, therefore it is described as showing no warpage behavior due to thermal loading. However, it was reported that warpage is actually caused by residual stress accumulated during grinding and polishing in order to make silicon wafer thinner, which make silicon wafer inhomogeneous through thickness direction. In this paper, warpage behavior of the single-side polished wafer at solder reflow temperature, the highest temperature in packaging processes, was measured using 3D digital image correlation (DIC) method. Mechanism was verified by measuring coefficient of thermal expansion (CTE) of both mirror-polished surface and rough surface.

Estimation for Equivalent Flexural Stiffness of Innovative Prestressed Support(IPS) Wale (혁신적 프리스트레스트 가시설(IPS)의 띠장에 대한 등가 휨강성의 산정)

  • Kim, Sung Bo;Kim, Hun Kyom;Heo, In Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.393-401
    • /
    • 2009
  • The flexural-stiffness formula of the wale for the innovative prestressed support (IPS) system was precisely derived, and the equivalent beam stiffness was introduced for application in the actual design of the IPS wale. The cable tension forces of the IPS wale were calculated in both cases, and the axial-deformation effects were included and ignored, respectively. The central displacements of the 1-post, 2-post, 3-post, and 4-post IPS wales were calculated based on the principle of virtual work. The effects of the IPS wale length and cable inclination angle were also investigated using the derived central displacements. The simplified equivalent flexural stiffness of the IPS wale is presented herein for design purposes, and the validity of the proposed design formula was verified through its comparison with the FE and analysis solutions.

Design of Fiber Reinforced Cement Matrix Composite Produced with Limestone Powder and Flexural Performance of Structural Members (석회석 미분말을 혼입한 시멘트계 매트릭스 섬유복합재료의 설계 및 구조부재의 휨성능)

  • Hyun, Jung-Hwan;Kim, Yun-Yong
    • Composites Research
    • /
    • v.29 no.6
    • /
    • pp.328-335
    • /
    • 2016
  • The purpose of this study is to develop fiber reinforced cement matrix composite (ECC) produced with limestone powder in order to achieve high ductility of the composite, and to evaluate flexural performance of structural members made with ECC. Four kinds of mixture proportions were determined on the basis of the micromechanics and a steady state cracking theory considering the matrix fracture toughness and fiber-matrix interfacial characteristics. The mechanical properties of ECC, represented by strain-hardening behavior in uniaxial tension, were investigated. Also, strength property of the composite was experimentally evaluated. Two structural members made with ECC were produced and tested. Test results were compared with those of conventional concrete structural members. Increased limestone powder contents of ECC provides higher ductility of the composites while generally resulting in a lower strength property. ECC structural members exhibited higher flexural ductility, higher flexural load-carrying capacity and tighter crack width compared to conventional structural members.

Flexural Strength Evaluation of PSC Beam with Loss of PS Tendon Area (PS강재의 단면적 감소에 따른 PSC보의 휨강도 평가)

  • Park, Soon-Hyung;Kim, Yong-Tae;Youn, Seok-Goo;Kim, Eun-Kyum
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.309-312
    • /
    • 2008
  • This paper describes ultimate load tests which were performed to show the effects of prestress loss and tendon corrosion on the flexural strength of post-tensioned concrete beams and the occurrence of wire fracture. Five test specimens were fabricated in laboratory with the variations of the prestress of tendons and the loss of tendon area. For two specimens, small area of tendon at the center of the beam was exposed by using diameter 25mm drill and the exposed tendon was corroded using accelerated corrosion equipment. During the tests, deflections, crack width, and strain changes were measured and acoustic events were monitored with two acoustic sensors. Tests results show that the ultimate flexural strength of test specimens with corroded tendons is smaller than the predicted flexural strength which is calculated considering the loss of tendon area. It is considered that estimation of flexural strength of PSC beams with corroded tendons is very complicated just based on the loss of tendon area obtained by one-side visual inspection.

  • PDF