• Title/Summary/Keyword: 휨좌굴

Search Result 143, Processing Time 0.032 seconds

Buckling Analysis of Inelastic Steel Members (비탄성 강재 부재의 좌굴 해석)

  • Gil, Heung-Bae
    • Journal of Korean Society of Steel Construction
    • /
    • v.12 no.1 s.44
    • /
    • pp.29-43
    • /
    • 2000
  • In this study, the computationally efficient inelastic buckling analysis program is developed to be used as the research tool in finding buckling strength of inelastic members. The program can determine buckling loads and buckled shapes of elastic and inelastic members which failed by flexural, lateral-torsional and/or local buckling. It can analyze singly and doubly symmetric I-shape members. In the program, the web of the member is modeled using the plate element and the flanges are modeled by beam elements. Multilinear isotropic hardening rule and the incremental theory of plasticity are used to simulate the inelastic stress-strain relationship from material tests. The program is verified using theoretical solutions and experimental results. The results from the program show good agreement with those from experiments and theory.

  • PDF

The Compressive Strength of Longitudinally Stiffened Plates Undergoing Local and Distortional Buckling (국부좌굴과 뒤틀림좌굴이 발생하는 종방향 보강재로 보강된 강판의 압축강도)

  • Park, Ho-Sang;Seo, Sang-Jung;Kwon, Young-Bong
    • Journal of Korean Society of Steel Construction
    • /
    • v.22 no.3
    • /
    • pp.219-228
    • /
    • 2010
  • This paper describes an experimental research on the structural behavior and the ultimate strength of longitudinally stiffened plates subjected to local, distortional, or mixed-mode buckling under compression. The stiffened plate undergoes local, distortional, or interactive local-distortional buckling according to the flexural rigidity of the plate's longitudinal stiffeners and the width-thickness ratios of the sub-panels of the stiffened plate. A significant post-buckling strength in the local and distortional modes affects the ultimate strength of the longitudinally stiffened plate. Compression tests were conducted on stiffened plates that were fabricated from 4mm-thick SM400 steel plates with a nominal yield stress of 235MPa. A simple strength formula for the Direct Strength Method based on the test results was proposed. This paper proves that the Direct Strength Method can properly predict the ultimate strength of stiffened plates when the local buckling and distortional buckling occur simultaneously or nearly simultaneously.

Experimental Study on the Buckling Behavior of L-Shaped Header System (L-헤더 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.5 s.60
    • /
    • pp.665-674
    • /
    • 2002
  • The back-to-back and box-shaped headers used in light gauge steel structures have some disadvantages, i.e., construction efficiency and cost competitiveness. As such, cold-formed steel L-shaped headers have been developed and are used actively in advanced nations. However, this system has not been used in Korea because of inadequate investigation and adaptation efforts and lack of application example. Thus, this research evaluated the structural performance of L-header using buckling analyses and bending tests. Test results were compared using the AISI design criteria. Test results showed that local buckling and distortional buckling governed buckling behavior in gravity loads and uplift loads, respectively. These results were consistent with the calculated nomial strengths using the AISI design criteria.

The Buckling Characteristics of Single-Layer Lamella Domes according to the Joint Flexibility under Construction (단층라멜라 돔의 시공 중 접합부 강성에 따른 좌굴특성)

  • Suk, Chang-Mok;Kim, Cheol-Hwan;Jung, Hwan-Mok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.2
    • /
    • pp.111-118
    • /
    • 2011
  • Single-layer latticed domes with rigid-joint have an advantage in the construction cost and the aesthetic. But, in single-layer latticed domes, the joints are hard to discriminate between pin-joint and rigid-joint, and consisted of semi-rigid joint in practical. And the erection of large roof structures requires special techniques. As one of these special techniques is the Step-Up erection method. This paper verified buckling characteristics of single-Layer lamella domes according to the Joint flexibility under construction by Step-up method. The results are follows: As erection steps increase, the buckling strength decreases. It is occurred the joint buckling by snap through on the top of dome when the joint flexibility close the rigid. And large tensile stress distribution appeared in circumferential member of bottom boundary when the step of construction is low. As the step of construction increase, large compressive stress distribution showed in the top of dome.

An Evaluation of Axial Compressive Strength in Steel Stud (스틸스터드의 압축내력 평가)

  • Shin, TaeSong
    • Journal of Korean Society of Steel Construction
    • /
    • v.10 no.4 s.37
    • /
    • pp.677-689
    • /
    • 1998
  • In relation to concentrically loaded compression, this research is to describe, analyze, and evaluate the design strength in steel stud. The similarity and difference among load and resistance factor design specification for cold-formed steel structural members (AISI), cold-formed thin gauge members and sheeting (EC3 part 1.3), and German draft (DASt-Richtlinie 016) are introduced, discussed, and systematically evaluated. Especially, the effective width and global instability problems (flexural buckling and torsional flexural buckling) are here implied in this research. The design axial strength by dual standards (AISI and EC3) is calculated and compared using the example.

  • PDF

Flexural Strength of HSB Plate Girder with Compact or Noncompact Web Due to Inelastic Lateral-Torsional Buckling (조밀 또는 비조밀 복부판을 갖는 HSB 플레이트거더의 비탄성 횡비틀림좌굴에 의한 휨강도)

  • Shin, Dong Ku;Cho, Eun Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.6A
    • /
    • pp.399-409
    • /
    • 2012
  • The flexural behavior of HSB plate girder with a non-slender web, due to inelastic lateral-torsional buckling, under uniform bending was investigated by the nonlinear finite element analysis. Both homogeneous sections fabricated from SM570-TMC, HSB600 or HSB800 steel and hybrid sections with HSB800 flanges and SM570-TMC web were considered. The flanges and web of selected noncomposite I-girders were modeled as thin shell elements and the geometrical and material nonlinear finite element analysis was performed by the ABAQUS program. The steel was assumed as an elasto-plastic strain hardening material. Initial imperfections and residual stresses were taken into account and their effects on the inelastic lateral-torsional buckling behavior were analyzed. The flexural strengths of selected sections obtained by the finite element analysis were compared with the nominal flexural strengths from KHBDC LSD, AASHTO LRFD, and Eurocode and the applicability of these codes in predicting the inelastic lateral torsional buckling strength of HSB plate girders with a non-slender web was assessed.

A Study on Shear and Flexural Performance Evaluation of Circularly Corrugated Plate (원형 파형강판의 전단 및 휨 성능평가에 관한 연구 -전단 및 휨강도 설계식 제안-)

  • Moon, Seong Hwan;Oh, Sang Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.27 no.5
    • /
    • pp.455-470
    • /
    • 2015
  • This research suggest method to calculate more accurate shearing and bending force on corrugated steel plate that it is produced domestically. This research analyze limitation of former formula on domestic design standard and existing research. In addition The strength calculation formula on corrugated steel plate was proposed according to result of the experiment and FEM analysis. In this study, the result that compare experiment with analysis using the proposed shear buckling coefficient and limit width to thickness ratio indicate similar behavior. As the result of the research, It is judged that the structural member design and performance evaluation of the corrugated steel plate was conveniently applied.

In-plane elastic buckling strength of parabolic arch ribs subjected symmetrical loading (대칭 하중을 받는 포물선 아치 리브의 탄성 면내 좌굴 강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Kim, Sung Hoon;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.2 s.75
    • /
    • pp.161-171
    • /
    • 2005
  • When the in-plane flexural rigidity is small in relation to the applied load, the arch ribs may buckle to the in-plane direction. Designers should therefore determine the in-plane buckling strength. To determine the buckling strength of arch ribs, designers have to consider the material nonlinear response. But in the case of arch ribs having large slenderness ratio, arch ribs may buckle in the elastic range, and when the arch ribs have low slenderness ratio, elastic buckling strength is useful in the preliminary design. In this paper, elastic buckling strength of arch ribs, which are frequently used in practical design, is studied using nonlinear finite element method. In general, the relation between flexural rigidity and elastic buckling strength is linear. As seen from the results, however, when the arch ribs have low slenderness ratio, the relation between flexural rigidity and elastic buckling strength is nonlinear.

In-plane buckling strength of fixed parabolic arch (고정지점 포물선 아치의 면내 좌굴강도)

  • Moon, Ji Ho;Yoon, Ki Yong;Cho, Yong Rae;Lee, Hak Eun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.3
    • /
    • pp.301-310
    • /
    • 2006
  • If arches are braced by lateral restraints, the ultimate strength of arches is determined by in-plane buckling and plastic bending collapse. This paper is conducted to investigate the in-plane nonlinear elastic and inelastic buckling behavior and the strength of fixed parabolic arches in uniform compresion, as well as to study arch behaviors against non-uniform in-plane compression and bending. As shown by the results, the limit slenderness ratio is suggested to classify the bucklingmode. Buckling strength of fixed parabolic arches under uniform compresion are evaluated using buckling curve for a straight column. Finally, an interaction e quation for arches under combined axial compresion and bending action is proposed.

Experimental Study on the Buckling Behavior of Cold-formed Steel Warren Truss (냉간성형강 평트러스 시스템의 좌굴 거동에 관한 실험 연구)

  • Park, Wan Soon;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.747-754
    • /
    • 2002
  • Cold-formed steel truss system was reviewed in order to improve the various problems associated with the steel floor joist system, such as the structural deficiency caused by web punching and others. Two types of floor truss system using cold-formed steel were reviewed during this research project, including the square end type(SE type) and underslung type(EE type). The strctural behavior was analyzed using the AISI design criteria and various bending tests. Test results show that the SE type floor truss proved to be more efficient than the EE type when it is subjected to concentrated load, and that the unbraced length of the floor truss about the weak axis has much importance on the buckling strength of the floor truss. Test results indicate that their values surpass the calculated values predicated through the AISI design criteria.