• Title/Summary/Keyword: 휨부재

Search Result 687, Processing Time 0.026 seconds

PST Member Behavior Analysis Based on Three-Dimensional Finite Element Analysis According to Load Combination and Thickness of Grouting Layer (하중조합과 충전층 두께에 따른 3차원 유한요소 해석에 의한 PST 부재의 거동 분석)

  • Seo, Hyun-Su;Kim, Jin-Sup;Kwon, Min-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.6
    • /
    • pp.53-62
    • /
    • 2018
  • Follofwing the accelerating speed-up of trains and rising demand for large-volume transfer capacity, not only in Korea, but also around the world, track structures for trains have been improving consistently. Precast concrete slab track (PST), a concrete structure track, was developed as a system that can fulfil new safety and economic requirements for railroad traffic. The purpose of this study is to provide the information required for the development and design of the system in the future, by analyzing the behavior of each structural member of the PST system. The stress distribution result for different combinations of appropriate loads according to the KRL-2012 train load and KRC code was analyzed by conducting a three-dimensional finite element analysis, while the result for different thicknesses of the grouting layer is also presented. Among the structural members, the largest stress took place on the grouting layer. The stress changed sensitively following the thickness and the combination of loads. When compared with a case of applying only a vertical KRL-2012 load, the stress increased by 3.3 times and 14.1 times on a concrete panel and HSB, respectively, from the starting load and temperature load. When the thickness of the grouting layer increased from 20 mm to 80 mm, the stress generated on the concrete panel decreased by 4%, while the stress increased by 24% on the grouting layer. As for the cracking condition, tension cracking was caused locally on the grouting layer. Such a result indicates that more attention should be paid to the flexure and tension behavior from horizontal loads rather than from vertical loads when developing PST systems. In addition, the safety of each structural member must be ensured by maintaining the thickness of the grouting layer at 40 mm or more.

Novel Method for Numerical Analyses of Tapered Geometrical Non-linear Beam with Three Unknown Parameters (3개의 미지변수를 갖는 변단면 기하 비선형 보의 수치해석 방법)

  • Lee, Byoung Koo;Oh, Sang Jin;Lee, Tae Eun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.13-22
    • /
    • 2013
  • This paper deals with a novel method for numerical analyses of the tapered geometrical non-linear beam with three unknown parameters, subjected a floating point load. The beams with hinged-movable end constraint are chosen as the objective beam. Cross sections of the beam whose flexural rigidities are functionally varied with the axial coordinate. The first order simultaneous differential equations governing the elastica of such beam are derived on the basis of the Bernoulli-Euler beam theory. A novel numerical method for solving these equations is developed by using the iteration technique. The processes of the solution method are extensively discussed through a typical numerical example. For validating theories developed herein, laboratory scaled experiments are conducted.

The Influence of the Loading Sizes on Natural Frequency of the Advanced Composite Material Structures (복합신소재구조물의 고유진동수에 대한 하중크기의 영향)

  • Han, Bong Koo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.3
    • /
    • pp.20-27
    • /
    • 2013
  • Simple Iteration Method for calculating the natural frequency is presented in this paper. This method is simple but exact method of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross sections and arbitrary boundary conditions. This method consists of determining the deflected mode shape of the member due to the inertia force under resonance condition. Finite difference method is used for this purpose. The influence of the $D_{22}$ stiffness on the natural frequency is rigorously investigated. In this paper, the influence of the loading sizes, different cross section on the natural frequency of vibration of some structural elements is presented. This method extends to two dimensional problems including advanced composite material structures.

An Experimental Study on the Mechanical Behavior of Concrete Using Non-Sintered Cement (비소성 시멘트 콘크리트의 역학적 거동에 대한 실험 연구)

  • Yoo, Sung-Won;Min, Gyeong-Oan
    • Journal of the Korea Institute of Building Construction
    • /
    • v.12 no.1
    • /
    • pp.115-121
    • /
    • 2012
  • If cement could be manufactured with industrial byproducts such as granulated blast furnace slag, phosphogypsum, and waste lime rather than clinker, there would be many advantages, including the maximization of the use of these industrial byproducts for high value-added resources, the conservation of natural resources and energy by omitting the use of clinker, the minimization of environmental pollution problems caused by $CO_2$ discharge, and the reduction of the production cost. For this reason, in this study, mechanical behavior tests of non-sintered cement concrete were performed, and elasticity modulus and stress-strain relationship of non-sintered cement concrete were proposed. Nine test members were manufactured and tested according to reinforcement ratio and concrete compressive strength. According to the test results, there was no difference between general cement concrete and non-sintered cement concrete in terms of flexure and shear behavior.

Elasto-Plastic F.E. Analysis of Plane Framed Structures including Large Deformation Effects (대변형(大變形) 효과(效果)를 고려(考慮)한 평면(平面)뼈대 구조물(構造物)의 탄(彈)-소성(塑性) 유한요소해석(有限要素解析))

  • Kim, Moon Young;Yoo, Soon Jae;Lee, Myeong Jae
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.14 no.1
    • /
    • pp.105-117
    • /
    • 1994
  • A finite element procedure which can trace plastic collapse behavior of plane frame structures under small and large deformation is presented. The member is assumed to be prismatic and straight, and has the rectangular or I cross section. For the elasto-plastic analysis, the concept of plastic hinge is introduced and the incremental displacement method is applied. The limit state condition of the plastic hinge is considered under the combined condition of a bending moment and an axial force. Numerical examples are presented in order to demonstrate the validity and efficiency of the proposed procedure.

  • PDF

Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load (송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험)

  • Moon, Byoung-Wook;Min, Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.20 no.5
    • /
    • pp.641-652
    • /
    • 2007
  • In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

A New Refined Truss Modeling for Shear-Critical RC Members (Part I) - lts derivation of Basic Concept - (전단이 지배하는 RC부재의 새로운 트러스 모델링 기법 연구 (전편) - 기본 개념 유도를 중심으로 -)

  • Kim Woo;Jeong Jae-Pyong;Kim Dae-Joong
    • Journal of the Korea Concrete Institute
    • /
    • v.16 no.6 s.84
    • /
    • pp.785-794
    • /
    • 2004
  • This paper describes a new refined truss modeling technique derived based on the well-known relationship of V=dM/dx=zdT/dx+Tdz/dx in a reinforced concrete beam subjected to combined shear and moment loads. The core of the model is that a new perspective on the shear behavior can be gained by considering the variation of the internal arm length along the span, so that the shear resistance mechanism can be expressed by the sum of two base components; arch action and beam action. The sharing ratio of these two actions is determined by accounting for the compatibility of deformation associated to the two actions. Modified Compression Field Theory and the tension-stiffening effect formula in CEB/FIP MC-90 are employed in calculating the deformations. Then the base equation of V=dM/dx has been numerically duplicated to form a new refined truss model.

Crack Control in Reinforced Concrete Flexural Members (철근콘크리트 휨부재의 균열 제어에 관한 연구)

  • Choi, Seung-Won;Kim, Woo
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.471-478
    • /
    • 2011
  • For a practical simplicity in designing of reinforced concrete structures, the indirect crack controlling method of limiting bar spacing is adopted in KCI structural design provisions. In addition, a direct method for evaluating crack width is also provided in the appendix of the code. But there may be some mismatched results between these two crack controlling methods. In this study, limit values of maximum bar spacing calculated from KCI provisions, KCI appendix, and Frosch's equation are examined as concrete strength, cross-section height, and concrete cover are varied, and the differences are analyzed. From the results, it becomes clear that the differences between maximum bar spacing calculated from KCI code text provisions and those from KCI code appendix provisions are too significant to be neglected. Therefore, rational crack models are suggested in order to get rid of the discrepancy between the direct and indirect control methods.

Vertical Direction Redistribution of Beam Moments in the Seismic Design of RC Frame (RC 골조의 내진설계에서 보 모멘트의 수직방향 재분배)

  • Kim, Dae-Kon
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.57-66
    • /
    • 2011
  • For the lateral load resistance of a RC frame in a medium risk seismic zone, the strength of lower story beams and columns should be larger than those of the upper stories. However, the lateral loads can be accommodated by redistributing design beam moments vertically as well as horizontally so all beams end up with identical strengths. This paper looks at the impact of the vertical redistribution of beam moments to provide identical beam strength over as many floors as possible. Two-bay six-story RC frame was designed with and without vertical beam moment redistribution and its seismic performance were evaluated by using push-over limit analysis and by non-linear time history dynamic analysis. Analytical results show that with the use of vertical beam moment redistribution the increase in the ductility demand is similar to the proportion of moment redistribution applied, but this additional demand is below the ductility capacity of well detailed RC members.

Optimum Design of Plane Frames Subject to Displacement and Stress Constraints (처짐과 응력제약(應力制約)을 받는 평면(平面) 뼈대의 최적설계(最適設計))

  • Chung, Young Shik;Lee, Jae Whane
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 1987
  • This work presents an optimality criteria method which gives accurate solution to the structural optimization problem of plane frames subject to displacement and stress constraints. The method is made efficient, as well as rigorous, by including only the lateral displacement of the top floor in the set of behavioral constraints. The bending stresses of members are treated as side constraints based on the concept of fully-stressed-design, but the optimality of the final design is tested by treating them as behavioral constraints and examining if the design satisfies this new optimality criteria. Worked examples show the superiority of the rigorous opimality criteria in spite of its being simple and efficient.

  • PDF