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복합신소재구조물의 고유진동수에 대한 하중크기의 영향

The Influence of the Loading Sizes on Natural Frequency of the Advanced Composite 

Material Structures
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Abstract

Simple Iteration Method for calculating the natural frequency is presented in this paper. This method is simple but exact method
of calculating natural frequencies corresponding to the modes of vibration of beams and tower structures with irregular cross 
sections and arbitrary boundary conditions. This method consists of determining the deflected mode shape of the member due to 
the inertia force under resonance condition. Finite difference method is used for this purpose. The influence of the  stiffness 
on the natural frequency is rigorously investigated. In this paper, the influence of the loading sizes, different cross section on the
natural frequency of vibration of some structural elements is presented. This method extends to two dimensional problems including 
advanced composite material structures.
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1. INTRODUCTION

The advanced composite materials can be used economically 
and efficiently in broad civil engineering applications when 
standards and processes for analysis, design, fabrication, 
construction and quality control are established. The problem 
of deteriorating infrastructures is very serious in our country. 

The advanced composite materials can be effectively 
used for repairing such structures. Because of the advantages 
of these materials, such repair job can fulfill two purposes :

(1) Repairing of existing damage caused by corrosion, 
impact, earthquake, and others.

(2) Reinforcing the structure against the possible future 
situation which will require the increase of the load 
beyond the design parameters used for this structure.

Before making any decision on the repair, reliable non- 
destructive evaluation is necessary. One of the dependable 
methods is to evaluate the in-situ stiffness of the structure 
by means of obtaining the natural frequency. By comparing 
the in-situ stiffness with the one obtained at the design 
stage, the degree of damage can be estimated rather 
accurately.

The reinforced concrete slab can be assumed as a [0, 90, 
0]r type specially orthotropic plate as a close approximation, 
assuming that the influences on the stiffness  ,  ,   

and   are negligible. Many of the bridge and building 

floor systems, including the girders and cross beams, also 
work as similar specially orthotropic plates. Such plates 
are subject to the concentrated mass/masses in the form of 
traffic loads, or the test equipments such as the accelerator 
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in addition to their own masses. Analysis of such problems 
is usually very difficult.

Most of the design engineers for construction have 
bachelors level of academic background. Theories for 
advanced composite structures are too difficult for such 
engineers, so simpler but still accurate methods are 
necessary.

Most of the civil structures are large in sizes and the 
numbers of laminae are large, even though the thickness to 
length ratios are small enough to allow neglecting the 
transverse shear deformation effects in stress analysis. For 
such plates, the fiber orientations given above work as 
specially orthotropic plates and simple formulas developed 
by the reference can be used (Kim 1995, Han & Kim, 
2001, 2003, 2009). 

Most of the bridge and building slabs on girders have 
large aspect ratios. For such cases further simplification is 
possible by neglecting the effect of the longitudinal moment 
terms ( ) on the relevant partial differential equations of 

equilibrium (Han & Kim, 2001). This paper presents the 
result of the study on the subject problem. Even with such 
assumption, the specially orthotropic plate with boundary 
conditions other than Navier or Levy solution types, or 
with irregular cross section, or with nonuniform mass 
including point masses, analytical solution is very difficult 
to obtain. Numerical methods for eigenvalue problems are 
also very much involved in seeking solutions (Ashton, 
Pagano, Whitney, 1970, Timoshenko, 1989).

2. METHOD OF ANALYSIS 

2.1 Finite Difference Method

The equilibrium equation for the specially orthotropic 
plate is : 



 

 

 



 

  (1)

where         

The assumptions needed for this equation are :
(1) The transverse shear deformation is neglected.
(2) Specially orthotropic layers are arranged so that no 

coupling terms exist, i.e.          .

(3) No temperature or hygrothermal terms exist.

The purpose of this paper is to demonstrate, to practicing 
engineers, how to apply this equation to the slab systems 
made of plate girders and cross beams.

In case of an orthotropic plate with boundary conditions 
other than Navier or Levy solution type, or with irregular 
cross section, or with nonuniform mass including point 
masses, analytical solution is very difficult to obtain. 
Numerical methods for eigenvalue problems are also very 
much involved in seeking such a solution. Finite difference 
method is used in this paper. The resulting linear algebraic 
equations can be used for any cases with minor modifications 
at the boundaries, and so on.

The problem of deteriorating infrastructures is very 
serious all over the world. Before making any decision on 
repair work, reliable non-destructive evaluation is necessary. 
One of the dependable methods is to evaluate the in-situ 
stiffness of the structure by means of obtaining the natural 
frequency. By comparing the in-situ stiffness with the one 
obtained at the design stage, the degree of damage can be 
estimated rather accurately.

The basic concept of the Rayleigh method, the most 
popular analytical method for vibration analysis of a single 
degree of freedom system, is the principle of conservation 
of energy ; the energy in a free vibrating system must 
remain constant if no damping forces act to absorb it. In 
case of a beam, which has an infinite number of degree of 
freedom, it is necessary to assume a shape function in 
order to reduce the beam to a single degree of freedom 
system (Clough, 1995). The frequency of vibration can be 
found by equating the maximum strain energy developed 
during the motion to the maximum kinetic energy. This 
method, however, yields the solution either equal to or 
larger than the real one. Recall that Rayleigh’s quotient ≥
1 (Kim, 1995). For a complex beam, assuming a correct 
shape function is not possible. In such cases, the solution 
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obtained is larger than the real one.

2.2 A proposal of the Simple Iteration Method

Structural engineers need to calculate the natural frequencies 
of such element, but obtaining exact solution to such 
problems is very difficult. Pretlove reported a method of 
analysis of beams with attached masses using the concept 
of effective mass. This method, however, is useful only for 
certain simple types of beams. Such problems can be 
easily solved by the method presented in this paper. 

Simple Iteration Method for calculating the natural 
frequency is presented in this paper. it is a simple but exact 
method of calculating the natural frequency corresponding 
to the first mode of vibration of beam and tower structures 
with irregular cross sections and attached mass/masses is 
presented. This method consists of determining the deflected 
mode shape of the member due to the inertia force under 
resonance condition. Beginning with initially “guessed” mode 
shape, “exact” mode shape is obtained by the process 
similar to iteration. Recently, this method was extended to 
two dimensional problems including composite laminates, 
and has been applied to composite plates with various 
boundary conditions with/without shear deformation effects. 
This method is used for vibration analysis in this paper.

A natural frequency of a structure is the frequency under 
which the deflected mode shape corresponding to this 
frequency begins to diverge under the resonance condition. 
From the deflection caused by the free vibration, the force 
required to make this deflection can be found, and from 
this force, resulting deflection can be obtained. If the mode 
shape as determined by the series of this process is 
sufficiently accurate, then the relative deflections (maximum) 
of both the converged and the previous one should remain 
unchanged under the inertia force related with this natural 
frequency. Vibration of a structure is a harmonic motion 
and the amplitude may contain a part expressed by a 
trigonometric function. Considering only the first mode as 
a start, the deflection shape of a structural member can be 
expressed as

w    sin (2)

where
W : maximum amplitude
  : circular frequency of vibration
 : time

By Newton’s second law, the dynamic force of the 
vibrating mass, m, is

  

  (3)

Substituting (2) into this,

    sin (4)

In this expression,   and   are unknowns. In order to 
obtain the natural circular frequency  , the following 
process is taken.

The magnitudes of the maximum deflection at a certain 
number of points are arbitrarily given as

   (5)

where (i,j) denotes the point under consideration. This is 
absolutely arbitrary but educated guessing is good for accel 
erating convergence. The dynamic force corresponding to 
this (maximum) amplitude is

  m i  j   i  j   wi  j  (6)

The “new” deflection caused by this force is a function 
of   and can be expressed as

wi  j   f m k l  i j   wk l 

k l ∆ i j k lm k l i  j   wk l (7)

where ∆  is the deflection influence surface. The relative 
(maximum) deflections at each point under consideration 

of a structural member under resonance condition, wi  j   
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and wi  j  , have to remain unchanged and the following 
condition has to be held : 

wi  j  wi j    (8)

From this equation,   at each point of (i,j) can 
be obtained, but they are not equal in most cases. Since 
the natural frequency of a structural member has to be 
equal at all points of the member, i.e.,  should be 
equal for all (i,j), this step is repeated until sufficient equal 
magnitude of  is obtained at all (i,j) points.

However, in most cases, the difference between the 
maximum and the minimum values of  obtained by 
the first cycle of calculation is sufficiently negligible for 
engineering purposes. The accuracy can be improved by 
simply taking the average of the maximum and the minimum, 

or by taking the value of wi j   where the deflection 

is the maximum. For the second cycle, wi j   in the 

absolute numerics of wi j   can be used for convenience.

wi  j   f m i j   i j   wi j   (9)

In case of a structural member with irregular section 
including composite one, and non-uniformly distributed 
mass, regardless of the boundary conditions, it is convenient 
to consider the member as divided by finite number of 
elements. The accuracy of the result is proportional to the 
accuracy of the deflection calculation.

For practical design purposes, it is desirable to simplify 
the vibration analysis procedure. One of the methods is to 
neglect the weight of the structural element. The effect of 
neglecting the weight (thus mass) of the plate is studied as 
follow. If a weightless plate is acted upon by a concentrated 
load,   ⋅⋅⋅ , the critical circular frequency of 
this plate is

  



 (10)

where   is the static deflection.

Similar result can be obtained by the use of Eqs. (7) and 
(8).

  〔∆  ⋅
〕

 (11)

where, 

  ⋅⋅⋅ (12)

In case of the plate with more than one concentrated 
loads,

  
〔
∆  ․

〕
 (13)

If we consider the mass of the plate as well as the 
concentrated loads,

wi j  wi j 
 {

∆ (i,j,k,l)⋅m(k,l)⋅wk l

+
∆ij mn ․

 ․wmn}×  (14)

where (m,n) is the location of the concentrated loads. 
The effect of neglecting the weight of the plate can be 
found by simply comparing Eq. (13) and Eq. (14).

Since no reliable analytical method is available for the 
subject problem, F.D.M. is applied to the governing 
equation of the special orthotropic plates.

The number of the pivotal points required in the case of 

the order of error ∆  , where △ is the mesh size, is five 
for the central differences of the fourth order single 
derivative terms. This makes the procedure at the boundaries 
complicated. In order to solve such problem, the three 
simultaneous partial differential equations of equilibrium 
with three dependent variables, w, Mx, and My, are used 
instead of Eq.(1) for the bending of the specially 
orthotropic plate. 
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Fig. 1 Simply supported beam with uniform flexural rigidity

Table 1 Influence coefficients, ∆, for simple beam

j
I

1 2 3 4 5

1 2.7 5.8 6.2 4.5 1.6

2 5.8 14.7 16.5 12.3 4.5

3 6.2 16.5 20.8 16.5 6.2

4 4.5 12.3 16.5 14.7 5.8

5 1.6 4.5 6.2 5.8 2.7



 

 

 



 

   (15)

  

 



  (16)

  

 

 

  (17)

If F.D.M. is applied to these equations, the resulting 
matrix equation is very large in sizes, but the tridiagonal 
matrix calculation scheme used by author (Kim, 1965, 
1967) is very efficient to solve such equations. In order to 
confirm the accuracy of the Simple Iteration Method, 
[A/B/A]r type laminate with aspect ratio of a/b=1m/1m=1 
is considered. The material properties are :

         

   

     

The thickness of a ply is 0.005m. As the r increases, 
 ,  ,  , and   decrease and the equations for 

special orthotropic plates can be used. For simplicity, it is 

assumed that    ,     and r=1. Then =18492 
N-m.

Since one of the few efficient analytical solutions of the 
special orthotropic plate is Navier solution, and this is 
good for the case of the four edges simple supported, 
Simple Iteration Method is used to solve this problem and 
the result is compared with the Navier solution. 

The mesh size is △x=a/10=0.1m, △y=b/10=0.1m. The 
deflection at (x, y), under the uniform load of 100N/m2, 
the origin of the coordinates being at the corner of the 
plate, is obtained, and the ratio of the Navier solution to 
the Simple Iteration Method solution is 1.005~1.00028.

3. NUMERICAL EXAMPLES

3.1 Calculation of Simple Iteration Method

As a calculation of the Simple Iteration Method, a 
simply supported beam with uniform flexural rigidity, EI, 
is considered as shown in Fig. 1.

The length of the beam is 10 m. The weight of the 
beam is assumed as 500kg/m. the weight acts as the mass 
when the beam vibrates and is treated as concentrated 
loads at five equally spaced points. Since a beam is 
one-dimensional, one subscript, i, is used. The set of 
influence coefficients, ∆ , where i is the point under 

consideration and j is the loading point (unit load), is 
given in Table 1. 

The initially guessed maximum amplitude,  , can 
be arbitrary and the following values are given. 

    

    

  

These values are substituted into equations 4.77 and 
4.78, and from equation 4.79, the following result is 
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obtained:

w  m   EI
w  m   EI
w  m   EI

Letting wi  wi    , we get

  

  

  

where   




Since all    should be equal at all i points, this 
process has to be repeated. For the second cycle, only the 
relative magnitude of the amplitude is necessary, and 

   are assigned as follows:

    

    

  

The same influence coefficient for the first cycle is 

repeatedly used, and the ‘new’ amplitude, wi  , is obtained 
as 

w    A 
w    A 
w    A 

From wi  wi    ,

  

  

  

One more process is executed in order to obtain the 
better result as follows.

  

  

  

Note that all A are the same, and   

The result obtained by the ‘exact’ theory is   
It is noted that the result of the first cycle is good enough 
for engineering purposes. If   at the point of the maximum 

deflection,  , is considered, it is only 0.77% away 
from the “exact” result.

In the case of a variable cross section, including materials, 
   should be used. Influence coefficients 

can be found with relative ease in any case. 
Simple Iteration Method can be applied to any structural 

element with variable stiffnesses and loadings, and with 
any boundary conditions, including deep beams and thick 
plates for which an analytical solution is difficult to 
obtain. The accuracy of the result is proportional to that of 
deflection calculation. Calculation of the deflection influence 
surface is the fundamental first step in any structural 
analysis and design. Attention should be given to the fact 
that this method utilizes the deflection influence surfaces 
which are used at the beginning of the analysis and 
design.

3.2 The influence of loading sizes on natural frequencies

Simple Iteration Method is used to study the influence of 
loading sizes and moment of inertia on natural frequencies of 
simply supported beams, fixed beams and cantilever beams, 
and tower type structures. For a simply supported uniform 
beams with different loading sizes as shown in Fig. 2.

For a simply supported beams with different loading 
sizes as shown in Fig. 3.

For practical design purposes, it is desirable to simplify 
the vibration analysis procedure. One of the methods is to 
neglect the weight of the beam. The effect of neglecting 
the weight (thus mass) of the beam is studied as follows.

If a weightless beam is acted upon by a load P, the 

critical circular frequency of this beam is    , 
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Fig. 2 Simply supported uniform beam with different loading 

sizes

Fig. 3 Simply supported beam with different loading sizes

Fig. 4 Fixed uniform beam with different loading sizes

where   is the static deflection.

For a massless simply supported beam with uniform EI 
throughout the length L, acted upon by a load P, at the 

center     .

For a fixed uniform beam with different loading sizes as 
shown in Fig. 4.

Replacing P by Nm, N is gradually increased and   are 
calculated for each of N. The results are compared with 
those from previous study (Fig. 2~Fig. 3). 

It is noted that N does not directly indicate the ratio of 
the weight of the concentrated load to the total weight of 
a uniform load. For example, N=10 indicates that the ratio 
is (10 - 1)/3 = 3, i.e. the weight of P is three times the 
total weight of the beam. 

Thus, in the case of a uniform simple beam with a 
concentrated load at the center of the span, the weight of 
which is three times that of the beam, the critical frequency 
difference between the correct value, obtained by considering 
the weight of the beam, and the approximate one, obtained 
by neglecting this weight, is 2.30%. In the case of a fixed 
beam with similar condition, the difference is 0.68%. 

4. CONCLUSION

This paper aims to show Simple Iteration Method for 
calculating the natural frequency. A simple but exact method 
of calculating the natural frequency corresponding to the 
first mode of vibration of beam and tower structures with 
irregular cross sections and attached mass/masses is presented. 



한국구조물진단유지관리공학회 논문집 제17권 제3호(2013. 5) 27

요 지

본 논문에서는 고유진동수를 구하기 Simple Iteration Method을 제시하였다. 이 방법은 임의의 단면과 지점을 갖고 임의의 하중을 받는

보나 탑의 진동모드와 관련된 고유진동수를 간편하면서도 정확하게 계산할 수 있는 획기적인 방법이다. 이 방법에는 공진상태에서 관성력

에 기인한 부재의 처짐 모드를 구하게 된다. 진동해석을 위하여 처짐의 영향을 고려한 다양한 방법이 검토되었다. 이러한 목적으로 본 논문

에서는 유한차분법을 사용하였다. 고유진동수에 대한  휨강성의 영향을 철저하게 검토하였다. 본 논문에서는 구조 요소의 하중 분포 또

는 상이한 단면에 따른 고유진동수에 대한 영향을 연구하였으며 그 결과를 제시하였다. 이 방법은 첨단복합재료를 포함한 2차원 문제에도 

적용할 수 있다. 

핵심 용어 : Simple Iteration Method, 고유진동수, 하중크기, 유한차분법, 복합신소재 

This method consists of determining the deflected mode shape 
of the member due to the inertia force under resonance 
condition. This Simple Iteration Method extends to two 
dimensional problems including composite laminated plate.

A natural frequency of a structure is the frequency under 
which the deflected mode shape corresponding to this 
frequency begins to diverge under the resonance condition. 
From the deflection caused by the free vibration, the force 
required to make this deflection can be found and from 
this force, the resulting deflection can be obtained. For 
practical design purposes, it is desirable to simplify the 
vibration analysis procedure. In this paper, the relation 
between the applied loading sizes and the natural frequency 
of vibration of some structural elements is presented. 
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