• Title/Summary/Keyword: 후연

Search Result 67, Processing Time 0.204 seconds

A Study on the Combustion Characteristic of Paraffin Fuel Based Hybrid Rocket with the Post Chamber L/D Ratio (하이브리드 로켓용 파라핀 연료의 후연소실 L/D비 변화에 따른 연소 특성 연구)

  • Ko, Suhan;Lee, Donghee;Kwon, Sejin;Moon, Heejang
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.23 no.5
    • /
    • pp.19-26
    • /
    • 2019
  • Paraffin fuels usually have low combustion efficiency due to discharged unburnt droplets from the nozzle. Therefore, optimization of the post-chamber is becoming an important factor for performance. In this study, combustion experiments were conducted by changing either the length or diameter of the post-chamber to reveal the combustion behavior of paraffin fuel for hybrid rocket. As a result, the combustion efficiency improved due to the increase of the residence time as the post-chamber length increased. On the other hand, it is found that the influence of the diameter change was not significant compared with the case of variable post-chamber length.

Unsteady Pressure Oscillations of Liquefied Paraffin Wax Combustion in Hybrid Rocket (파라핀-왁스를 사용하는 하이브리드 로켓 연소의 비정상 압력 진동)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.5
    • /
    • pp.339-347
    • /
    • 2022
  • The post chamber in hybrid rocket is installed to induce additional increase in combustion enthalpy by allowing continuous burning of the liquefied fuels. When paraffin wax fuel is used, unsteady pressure oscillations are observed only at the beginning of combustion. This study intends to investigate the effect of additional combustion of liquefied fuel droplets on the occurrence of unsteady pressure fluctuations. For this, the combustion in post-chamber was visualized and image analysis using POD(Proper Orthogonal Decomposition) technique was performed. In addition, the hypothesis was proposed on the occurrence of unsteady pressure oscillations by identifying the modes including the behavior of droplets through mode reconstruction. Conducting a series of combustion tests, the amount of liquefied fuel flowing into the post chamber and the generation of fuel droplets were controlled. Also, the changes in frequency characteristic of unsteady pressure oscillation were monitored. As a result, the unsteady pressure oscillations observed in paraffin wax combustion were the result of additional combustion of fuel droplets generated in the post chamber.

Flow Visualization by Light Emission in the Post-chamber of Hybrid Rocket (광도측정에 의한 하이브리드 로켓 후연소실의 유동 가시화)

  • Park, Kyung-su;Choi, Go Eun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.8
    • /
    • pp.677-683
    • /
    • 2015
  • Hybrid rocket combustion displays low frequency instability(LFI, 10~30Hz) at a certain condition. Vortex shedding in the post-chamber is suspected to cause the occurrence of LFI. This study focused on the visualization of flow image using light emissions from high temperature combustion gas. Results shows that combustion pressure oscillates at a frequency of about 18 Hz, which is in phase with oscillations of light emission. Since LFI is not a property of thermo-acoustic instability, this result suggested there exists a physical coupling of pressure fluctuations with light emissions proportional to chemical reaction. Also POD analysis shows that dominant symmetric spatial modes in the stable combustion shift suddenly into asymmetric spatial pattern with the appearance of LFI. Especially, the appearance of mode 3 is a typical change of flow dynamics in unstable combustion representing a rotational fluid motions associated with vortex shedding.

A Study on the NOx Emission of the Turbulent Diffusion Flame Formed behind the After Burner (후연소기에 형성된 난류확산화염에서의 NOx생성에 관한 연구)

  • Lee, U-Seop;Kim, Gyu-Seong;Kim, Tae-Han;Lee, Do-Hyeong
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.22-28
    • /
    • 1999
  • The purpose of this study is to investigate the NOx emission of turbulent diffusion flame formed in the after burner, which is located on the waste gas coming out from the test furnace. Three types of flame was tested and each of which was changed by adequate equivalence ratio. It is necessary to study more about NOx reduction effect in the after burner system.

  • PDF

A Study on the Pollutants Reduction of Venturi Type After-burner by oxygen enrichment and Induced Air (산소부화와 유인공기를 이용한 벤츄리형 후연소기의 오염물질 저감에 관한 연구)

  • 오세원;박준홍;이용후;이진석;이도형
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.7
    • /
    • pp.845-851
    • /
    • 2003
  • The purpose of this experimental study is to investigate the quantitative pollutants reduction by oxygen enrichment and induced air effect in venturi type after-burner. For this purpose, CO, $CO_2$, $O_2$. and HC concentrations were measured before and after the after-burner by changing the Oxygen flow rate and area ratio which is defined as the ratio of air inducing area divided by total area. As results of this study, when the area ratio were increased, the emission reduction effect was increased even less oxygen flow rate. In that case when oxygen was injected too little, the pollutants were increased.

Low frequency Instability in Hybrid Rocket Post-chamber Configuration (연소실 형상 변화에 의한 하이브리드 로켓의 저주파수 연소불안정)

  • Park, Kyungsu;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.42 no.1
    • /
    • pp.29-36
    • /
    • 2014
  • Hybrid rocket displays many different low frequency pressure oscillations during combustion. Thermal lag between solid and gas phase is the primary mechanism to trigger low frequency pressure oscillations of around 10Hz, and Helmholtz or $L^*$ mode also produces other types of low frequency oscillations above 10 Hz which is associated with the change in combustion volume. Since the flow characteristics in hybrid rocket is very similar to those in solid rocket combustion, it is not surprising to observe similar pressure oscillation behaviors. Experimental test shows that combustion pressure suddenly turns into to a big amplitude oscillation around 10Hz then followed by returning to an original pressure level after a short period combustion. Further investigations show that this instability is independent of the change in O/F ratio at all. One of the possible candidates is the vortex shedding dynamics over the backward step in the post combustion chamber. It is required to investigate the low frequency oscillation mechanism in the future study.

Modeling for Thermoacoustic Instability and Beating Pressure Amplification in Hybrid Rocket Combustion (하이브리드 로켓의 열음향 불안정과 연소압력 맥놀이 발생 모델링)

  • Hyun, Wonjeong;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.11
    • /
    • pp.783-789
    • /
    • 2022
  • In a recent study, it was observed that the combustion gas entering the post chamber of a hybrid rocket contains vortices with very small size and high frequency characteristics. In addition, it was observed that small vortices collided with the nozzle wall to create a counter-flow, resulting in additional combustion with ignition delay. This study investigated the physical relationship between ignition delay induced by the counter-flow and the formation of beating pressure. To do this, a newly modified model was proposed by including ignition delay in the existing energy kicked oscillator model proposed by Culick. Numerical results show that the ignition delay is an important factor in determining the occurrence of the combustion pressure beats through the periodic formation of thermoacoustic coupling. In addition, when the ignition delay was reduced by increasing the post chamber length, the phase difference between the energy kick and the pressure generation was increased, the periodic pressure beats did not occur at all.

Anatomic study of the incisive canal in relation to midpalatal placement of mini-implant (정중구개부의 미니 임플랜트 식립과 관련된 절치관의 해부학적 연구)

  • Kim, Sung-Jin;Lim, Sung-Hoon
    • The korean journal of orthodontics
    • /
    • v.39 no.3
    • /
    • pp.146-158
    • /
    • 2009
  • Objective: The purpose of this study was to reveal the position of the incisive foramen in relation to the incisive papilla and cusp tips. Methods: Plaster models and CT images of 25 adult orthodontic patients were used to measure the width of the incisive canal and positions of the anterior and posterior borders of the incisive foramen in relation to the incisive papilla. Results: The palatal surface distance from the interdental papilla between the maxillary central incisors to the posterior border of the incisive foramen along the palatal surface was 1.7 fold of the distance from the interdental papilla between the central incisors to the posterior border of the incisive papilla. The distance between the posterior border of the incisive papilla and posterior border of the incisive foramen along the palatal surface was 6.15 ${\pm}$ 1.75 mm. The anteroposterior position of the posterior border of the incisive foramen was slightly anterior to the lingual cusp tips of the maxillary 1st premolars. The width of the incisive foramen was 4.03 ${\pm}$ 0.64 mm, therefore it is recommended to position the mini-implant more than 3 mm laterally when placing a mini-implant lateral to the incisive foramen, from the center. Conclusions: These results can be used as a reference in presuming the position of the incisive foramen when placing mini-implant in the anterior palate area.

Coupling Behavior of Pressure and Heat Release Oscillations by Swirl Injection in Hybrid Rocket (스월에 의한 하이브리드 로켓의 연소압력과 연소반응 진동의 결합 거동)

  • Kim, Jungeun;Lee, Changjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.7
    • /
    • pp.567-574
    • /
    • 2018
  • Swirl injection induces not only the increase in fuel regression rate but also the reduction of combustion pressure oscillation. This acts, in turn, to stabilize combustion process. Thus, this study primarily focuses on the change in flow structure in the main chamber by swirl injection. Then examining the change in flow structure was done to understand the physical process for stabilizing combustion. In the results, the application of swirl injection could suppress the generation of p' and q' in 500Hz band and could shift the phase difference and cross correlation. Further investigations with combustion visualization also show that the development of helical motion near surface region affects the small-sized vortex generation and shedding yielding combustion stabilization eventually.

A Study on the Pollutant Reduction by Venturi Type After-burner (벤츄리형 후연소기의 오염물질 저감에 관한 연구)

  • Lee, Hwa-Sin;Lee, Yong-Hoo;Lee, Jin-Seok;Kwon, Oh-Boong;Lee, Do-Hyung
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2005.06a
    • /
    • pp.81-86
    • /
    • 2005
  • The purpose of this study is to develop venturi type after-burner in order to obtain pollutant reduction effect and find the best stable combustion condition. For this purpose, through a flow analysis, the shape of venturi type was made and flame holder locations were also decided by measuring chemical species at before and after the after-burner. Also, various chemical species concentration were measured at changing the induced air rates and the oxygen for oxygen enrichment for the solution the problems of much oxygen flow rate and the flame stability range. As results of this study, a flow distribution and the purification effect was excellent at venturi contraction 0.5 and flame holder location 12mm below the center of Venturi throat. On the purification characteristics, we found that pollutants reduction was effective when area ratio and oxygen are increased. But there are suitable quantities due to the flame shape change and combustion efficiency.

  • PDF