DOI QR코드

DOI QR Code

하이브리드 로켓용 파라핀 연료의 후연소실 L/D비 변화에 따른 연소 특성 연구

A Study on the Combustion Characteristic of Paraffin Fuel Based Hybrid Rocket with the Post Chamber L/D Ratio

  • Ko, Suhan (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Lee, Donghee (Graduate School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kwon, Sejin (Department of Aerospace Engineering, Korea Advanced Institute of Science and Technology) ;
  • Moon, Heejang (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • 투고 : 2019.06.05
  • 심사 : 2019.09.03
  • 발행 : 2019.10.01

초록

파라핀 연료는 일반적으로 상당량의 미연 액적들이 노즐로 배출되는 관계로 연소효율을 낮아 연소효율과 직결된 후연소실의 최적화는 중요한 성능인자로 대두되고 있다. 따라서 본 연구에서는 하이브리드 로켓용 후연소실 길이 및 직경 변화에 따른 연소 특성을 파악하기 위한 연소 시험을 수행하였다. 연소 시험 결과, 후연소실 길이가 증가할수록 특성속도효율이 상승함을 확인하였으며 이는 후연소실 길이가 증가할수록 연소가스의 잔류시간 증가와 연소실 압력에 기인되는 것으로 판단되었다. 반면, 후연소실 직경 변화에 따른 특성속도효율 및 압력의 차이는 길이 변화 대비 크지 않음을 확인하였다. 따라서 하이브리드 로켓 시스템의 연소효율에 영향을 미치는 후연소실의 기하학적 요인은 직경보다는 길이의 영향에 크게 지배되는 것으로 사료된다.

Paraffin fuels usually have low combustion efficiency due to discharged unburnt droplets from the nozzle. Therefore, optimization of the post-chamber is becoming an important factor for performance. In this study, combustion experiments were conducted by changing either the length or diameter of the post-chamber to reveal the combustion behavior of paraffin fuel for hybrid rocket. As a result, the combustion efficiency improved due to the increase of the residence time as the post-chamber length increased. On the other hand, it is found that the influence of the diameter change was not significant compared with the case of variable post-chamber length.

키워드

참고문헌

  1. Humble, R.W., Henry, G.N., and Larson, W.J., Space Propulsion Analysis and Design, McGraw-Hill, Inc., Ch. 7, 1995.
  2. Karabeyoglu, M.A., Altman, D., and Cantwell, B.J., “Combustion of Liquefying Hybrid Propellants: Part 1, General Theory,” Journal of Propulsion and Power, Vol. 18, No. 3, pp. 610-620, 2002. https://doi.org/10.2514/2.5975
  3. Galfetti, L., Merotto, L., Boiocchi, M., Maggi, F., and De Luca, L.T., "Ballistic and Rheological Characterization of Paraffin-based Fuels for Hybrid Rocket Propulsion," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, AIAA 2011-5680, 2011.
  4. Toson, E., Kobald, M., di Betta, S., DeLuca, L., Ciezki, H., and Schlechtriem, S., "Rheological and Ballistic Investigations of Paraffin-Based Fuels for Hybrid Rocket," 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013.
  5. Kobald, M., Toson, E., Ciezki, H., Schlechtriem, S., di Betta, S., Coppola, M., and DeLuca, L., "Rheological, Optical and Ballistic Investigations of Paraffin-Based Fuels for Hybrid Rocket Propulsion Using a 2D Slab-Burner," 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013.
  6. Cho, J.T., "A Study on Characteristics of a Meltable Solid Fuel for hybrid Rocket," Master thesis, Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang, Gyeonggi-do, Korea, 2010.
  7. Ryu, S.H., Han, S.J., Kim, J.K., Moon, H.J., Kim, J.H., and Ko, S.W., “Tensile and Compressive Strength Characteristics of Aluminized Paraffin Wax Fuel for Various Particle Size and Contents,” Journal of the Korean Society of Propulsion Engineers, Vol. 20, No. 5, pp. 70-76, 2016. https://doi.org/10.6108/KSPE.2016.20.5.070
  8. Han, S.J., Kim, J.K., Moon, H.J, Kim, J.H., and Ko, S.W., “Thermal and Rheological Characterisitics of Paraffin Based Fuel on Aluminum Particle Size for Hybrid Rocket Application,” Journal of the Korean Society of Propulsion Engineers, Vol. 22, No. 2, pp. 108-114, 2018.
  9. Ishiguro, T., Sinohara, K., Sakio, K., and Nakagawa, I., "A Study on Combustion Efficiency of a Paraffin-based Hybrid Rockets," 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, pp. 5679, 2011
  10. Greiner, B. and Frederick, R.A. Jr., "Results of Labscale Hybrid Rocket Motor Investigation," 28th Joint Propulsion Conference and Exhibit, p. 3301, Jul. 1992.
  11. Moon, Y.J. and Lee, C.J., "Low Frequency Instability and Transient Behavior of Flame in the Hybrid Rocket Post-Chamber," 46th KSPE Spring Conference, Jeju, Korea, pp. 125-130, May 2016.
  12. "Rocket Propulsion," retrieved 16 Aug. 2018 from https://nptel.ac.in/courses/112106073/35
  13. Ko, S.H., "A Study on the Combustion Characteristics of Liquefying Solid Fuel Followed Shape of Post-Chamber for Hybrid Rocket Propulsion System," Master, Department of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyangsi, Gyeonggi-ddo, Korea, 2019.
  14. Marxman, G. and Gilbert, M., "Turbulent Boundary Layer Combustion in The Hybrid Rocket," Symposium (International) on Combustio, Vol. 9., No. 1, 1963.
  15. Gordon, S. and McBride, B.J., "Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications: I. Analysis," NASA, Cleveland, O.H., U.S.A, NASA RP-1311, October, 1994.