• Title/Summary/Keyword: 횡 전단

Search Result 324, Processing Time 0.027 seconds

Evaluation of Shear Strength for Wide Beam using GFRP Plate Shear Reinforcement (GFRP 판을 전단보강재로 사용한 넓은 보의 전단성능 평가)

  • Jo, Eunsun;Choi, Jin Woong;Kim, Min Sook;Kim, Heecheul;Lee, Young Hak
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.3
    • /
    • pp.267-274
    • /
    • 2015
  • In this paper, an experimental evaluation of shear strength of wide beam is presented. By the experiment in paper, shear strength depending on parameter of shear reinforcement by GFRP plate on wide beam is investigated. Specimens are 7 of reinforced by GFRP plate with openings. The shear reinforcement is manufactured into plate shape with openings to ensure perfect integration with concrete. The test was performed on 7 specimens. The parameters are including number of shear reinforcement by GFRP plates and center-to-center spacing between vertical strip. We analysed the crack, failure mode, strain, shear strength of specimens. A calculation of the shear strength of reinforced wide beam with GFRP plate based on ACI 318-11. The result of the experiment shows that the GFRP plate is works successfully as shear reinforcement in the wide beam.

Strength Estimation of Joints in Floating Concrete Structures Subjected to Shear (전단을 받는 부유식 콘크리트 구조물 접합부의 강도 평가)

  • Yang, In-Hwan;Kim, Kyung-Cheol
    • Journal of Navigation and Port Research
    • /
    • v.37 no.2
    • /
    • pp.155-163
    • /
    • 2013
  • This study explores the structural behavior of module joints in floating concrete structures subjected to shear. Crack patterns, shear behavior and shear capacity of shear keys in joints of concrete module were investigated. Test parameters included shear key shape, or inclination of shear keys, confining stress levels and compressive strength of concrete. Test results showed that shear strength of joints increased as shear key inclination increased. Test results also showed that shear strength of concrete module joints increased with the increase of confining stress levels. The equation for predicting shear strength of joints was suggested, which was based on the test results. Shear strength prediction by using the equation suggested in this study showed good agreement with test results.

On the Modification of a Classical Higher-order Shear Deformation Theory to Improve the Stress Prediction of Laminated Composite Plates (적층평판의 응력해석 향상을 위한 고전적 고차전단변형이론의 개선)

  • Kim, Jun-Sik;Han, Jang-Woo;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.249-257
    • /
    • 2011
  • In this paper, an systematic approach is presented, in which the mixed variational theorem is employed to incorporate independent transverse shear stresses into a classical higher-order shear deformation theory(HSDT). The HSDT displacement field is taken to amplify the benefits of using a classical shear deformation theory such as simple and straightforward calculation and numerical efficiency. Those independent transverse shear stresses are taken from the fifth-order polynomial-based zig-zag theory where the fourth-order transverse shear strains can be obtained. The classical displacement field and independent transverse shear stresses are systematically blended via the mixed variational theorem. Resulting strain energy expressions are named as an enhanced higher-order shear deformation theory via mixed variational theorem(EHSDTM). The EHSDTM possess the same computational advantage as the classical HSDT while allowing for improved through-the-thickness stress and displacement variations via the post-processing procedure. Displacement and stress distributions obtained herein are compared to those of the classical HSDT, three-dimensional elasticity, and available data in literature.

An Accurate and Efficient Analysis of Composite Plates Based on Enhanced First-order Shear Deformation Theory (개선된 일차전단변형이론을 이용한 복합재료 적층평판의 고정밀 해석)

  • Kim, Jun-Sik;Cho, Maeng-Hyo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.4 s.74
    • /
    • pp.407-418
    • /
    • 2006
  • In this paper, an efficient yet accurate stress analysis based on the first-order shear deformation theory (FSDT) is presented. The transverse shear strain energy is modified via the mixed variational theorem, so that the shear correction factors are automatically involved in the formulation. In the mixed variational formulation, the transverse stresses are taken to be functions subject to variations. The transverse shear stresses based on an efficient higher order plate theory (EHOPT, Cho and Parmerter, 1993) are utilized and modified, while the transverse normal stress is assumed to be the third-order polynomial of thickness coordinates, which satisfies both zero transverse shear stresses and prescribed surface fractions in top and bottom surfaces. On the other hand, the displacements are assumed to be those of the FSDT Resulting strain energy expressions are referred to as an EFSDTM3D that stands for an enhanced first-order shear deformation theory based on the mixed formulation for three dimensional elasticity, The developed EFSDTM3D preserves the computational advantage of the classical FSDT while allowing for important local through-the-thickness variations of displacements and stresses through the recovery procedure that is based on the least square minimization of in-plane stresses. Comparisons of displacements and stresses of both laminated and sandwich plates using the present theory are made with the classical FSDT, three-dimensional exact solutions, and available data in the literature.

Determination of Key Influence Parameters on RC Joint Shear Behavior Using the Bayesian Parameter Estimation (Bayesian parameter estimation을 적용한 RC 접합부 전단거동의 주요영향 요인 결정)

  • Kim, Jae-Hong;Yang, Jong-Ho;Im, Duk-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.328-331
    • /
    • 2011
  • 준정적 횡하중을 재하 받는 철근콘크리트 보-기둥 접합부의 전단강도에 대한 주요 영향요인을 Bayesian parameter estimation의 신뢰성 이론 접목을 통해 검토하였다. 이와 같은 연구 scope의 수행을 위해 철근콘크리트 보-기둥의 실험 database가 구축되었다. 실험 database는 일정한 criteria을 적용하여 구축되었으며, 포함된 시편들은 최종적으로 접합부 내의 전단파괴가 지배하는 경우들이다. 포함된 시편들의 상세는 ACI (American Concrete Institute) 352R-02를 기준으로 평가되어졌다. 보-기둥 접합부의 전단강도에 영향 요인을 편중되지 않게 평가하고자, Bayesian parameter estimation의 신뢰성 이론을 적용하였다. Bayesian parameter estimation의 적용을 통해 전단강도에 영향이 적은 변수 (not informative parameter)를 순차적으로 제거 (stepwise removal process)함으로 주요 영향요인의 우선 순위를 확인할 수 있었다. 검토된 8개의 변수들 중에서, 횡하중을 재하 받는 철근콘크리트 보-기둥의 전단강도는 주로 콘크리트 압축강도, in-plane geometry, 종방향 보의 주철근 그리고 접합부 내의 구속철근 순으로 영향을 줌을 알 수 있었다.

  • PDF

An Experimental Study on the Behavior of the Perforated Rib Connector with Shearing Bars (전단구속철근을 배치한 유공강판 전단연결재에 관한 실험적 연구)

  • Kim, Sung-Chil;Kim, Young-Ho;Yu, Sung-Kun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.175-182
    • /
    • 2006
  • In the design of composite structures, shear connectors such as headed stud, channel, perforated plate, etc, are commonly used to transfer longitudinal shear forces across the steel-concrete interface. Many researches have been conducted to improve the characteristics of different types of shear connector. This paper presents the results of 11 push-out tests performed on the new perforated rib connectors with shearing bars embedded in concrete slab under static loads. The results obtained from these tests are as following : 1) The bearing plate welded on both sides of perforated rib plate improves the stiffness and strength. 2) The capacity of perforated connectors is influenced primarily by the transverse reinforcements and shearing bars.

Shear Friction Strength Model of Concrete considering Transverse Reinforcement and Axial Stresses (축응력 및 횡보강근을 고려한 콘크리트의 전단마찰내력 평가모델)

  • Hwnag, Yong-Ha;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.167-176
    • /
    • 2016
  • Shear friction strength model of concrete was proposed to explain the direct friction mechanism at the concrete interfaces intersecting two structural elements. The model was derived from a mechanism analysis based on the upper-bound theorem of concrete plasticity considering the effect of transverse reinforcement and applied axial loads on the shear strength at concrete interfaces. Concrete was modelled as a rigid-perfectly plastic material obeying modified Coulomb failure criteria. To allow the influence of concrete type and maximum aggregate size on the effectiveness strength of concrete, the stress-strain models proposed by Yang et al. and Hordijk were employed in compression and tension, respectively. From the conversion of these stress-strain models into rigidly perfect materials, the effectiveness factor for compression, ratio of effective tensile strength to compressive strength and angle of concrete friction were then mathematically generalized. The proposed shear friction strength model was compared with 91 push-off specimens compiled from the available literature. Unlike the existing equations or code equations, the proposed model possessed an application of diversity against various parameters. As a result, the mean and standard deviation of the ratios between experiments and predictions using the present model are 0.95 and 0.15, respectively, indicating a better accuracy and less variation than the other equations, regardless of concrete type, the amount of transverse reinforcement, and the magnitude of applied axial stresses.

Static Behavior of Steel-Concrete Composite Beam with Perfobond Rib Shear Connector (Perfobond rib 전단연결재가 설치된 강.콘크리트 합성보의 정적거동)

  • Ahn, Jin Hee;Chung, Hamin;Kim, Sang Hyo
    • Journal of Korean Society of Steel Construction
    • /
    • v.21 no.4
    • /
    • pp.421-432
    • /
    • 2009
  • In this study, push-out and static loading tests were conducted to evaluate the behavioral characteristics of composite beams with a perfobond rib shear connector. The shear capacity of the perfobond rib was found to be proportional to its concrete strength, which is in turn affected by the increase in the concrete end-bearing strength and concrete dowel action to resist the shear force. The relative slips of the push-out specimen, however, which was used to assess the ductility of the shear connector, increased to some extent, but it no longer increased when it reached the critical concrete strength because of the flexibility of the transverse rebar in the rib hole. The static-loading-test results revealed a crack on the concrete slab in the composite beam with a perfobond rib on the side of the rib hole and transverse rebar for the applied moment and shear force to the rib hole, depending on the static loading. The shear resistance characteristics of the perfobond rib shear connector were found to resist the shear force from the relative slip on the interface of the composite beam. Thus, the sectional effect of the shear connector to the composite beam with a perfobond rib should be considered when designing the composite beam because the behavior of the composite beam can change owing to the shear connector.

Dynamic Characteristics of a 3-dimensional Irregular Setback Structure (3차원 비정형 Setback 구조물의 동적 특성)

  • 문성권
    • Computational Structural Engineering
    • /
    • v.11 no.4
    • /
    • pp.287-294
    • /
    • 1998
  • 입면의 형태가 임의의 층에서 큰 차이를 보이는 3차원 비정형 setback 구조물의 동적 거동 특성과 이들 구조물의 동적 거동에 미치는 바닥 슬래브의 면내 변형 효과를 분석하였다. 비정형 setback 구조물의 전반적인 동적 거동특성을 분석하기 위하여 베이스 부분의 평면적과 타워 부분의 평면적 비(R?), setback 발생위치(L?)등을 매개 변수로 사용하였다. 48개의 비정형 setback 구조물들에 대한 해석 수행 결과 setback 구조물은 정형 구조물에 비해 횡방향 1차 모드의 유효 모드 중량(effective modal weight)이 작게 나타나는 경향을 보이기 때문에 setback 구조물의 동적 거동을 파악하기 위해서는 등가 정적 해석법 대신에 동적 해석을 수행할 필요가 있음을 알 수 있었다. 바닥슬래브의 면내 변형은 보다 긴 구조물의 고유 진동 주기값을 가져오며 모드 순서 및 모드 형상에도 변화를 준다. 이러한 사실은 바닥슬래브의 면내 변형으로 인하여 횡방향 저항 요소들간의 전단력 분포와 층 변위가 영향을 받을 수 있다는 것을 의미한다. 이러한 현상은 횡방향 저항 요소들간의 강성 차가 심한 프레임-전단벽 시스템에서 두드러지게 나타난다.

  • PDF