• Title/Summary/Keyword: 회절효율

Search Result 276, Processing Time 0.02 seconds

CO2 Sequestration and Utilization of Calcium-extracted Slag Using Air-cooled Blast Furnace Slag and Convert Slag (괴재 및 전로슬래그를 이용한 CO2 저감 및 칼슘 추출 후 슬래그 활용)

  • Yoo, Yeongsuk;Choi, Hongbeom;Bang, Jun-Hwan;Chae, Soochun;Kim, Ji-Whan;Kim, Jin-Man;Lee, Seung-Woo
    • Applied Chemistry for Engineering
    • /
    • v.28 no.1
    • /
    • pp.101-111
    • /
    • 2017
  • Mineral carbonation is a technology in which carbonates are synthesized from minerals including serpentine and olivine, and industrial wastes such as slag and cement, of which all contain calcium or magnesium when reacted with carbon dioxide. This study aims to develop the mineral carbonation technology for commercialization, which can reduce environmental burden and process cost through the reduction of carbon dioxide using steel slag and the slag reuse after calcium extraction. Calcium extraction was conducted using NH4Cl solution for air-cooled slag and convert slag, and ${\geq}98%$ purity calcium carbonate was synthesized by reaction with calcium-extracted solution and carbon dioxide. And we conducted experimentally to minimize the quantity of by-product, the slag residue after calcium extraction, which has occupied large amount of weight ratio (about 80-90%) at the point of mineral carbonation process using slag. The slag residue was used to replace silica sand in the manufacture of cement panel, and physical properties including compressive strength and flexible strength of panel using the slag residue and normal cement panel, respectively, were analyzed. The calcium concentration in extraction solution was analyzed by inductively coupled plasma optical emission spectrometer (ICP-OES). Field-emission scanning electron microscope (FE-SEM) was also used to identify the surface morphology of calcium carbonate, and XRD was used to analyze the crystallinity and the quantitative analysis of calcium carbonate. In addition, the cement panel evaluation was carried out according to KS L ISO 679, and the compressive strength and flexural strength of the panels were measured.

Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide (산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구)

  • Kim, Byeong-Kwon;Min, Sang-Yoon;Chang, Yoon-Young;Yang, Jae-Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.7
    • /
    • pp.473-482
    • /
    • 2009
  • In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation (가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구)

  • Lee, Sung Hyun;Jeong, Young Jae;Lee, Jong Min;Kim, Dae Sung;Bae, Eun Ji;Hong, Seong Soo;Lee, Gun Dae
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.46-55
    • /
    • 2019
  • CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The $CH_3OH$, KI and p-benzoquinone were used as scavengers for ${\cdot}OH$ radical, photogenerated positive hole and ${\cdot}O_2{^-}$ radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ${\cdot}O_2{^-}$ radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.

LSTM Based Prediction of Ocean Mixed Layer Temperature Using Meteorological Data (기상 데이터를 활용한 LSTM 기반의 해양 혼합층 수온 예측)

  • Ko, Kwan-Seob;Kim, Young-Won;Byeon, Seong-Hyeon;Lee, Soo-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.3
    • /
    • pp.603-614
    • /
    • 2021
  • Recently, the surface temperature in the seas around Korea has been continuously rising. This temperature rise causes changes in fishery resources and affects leisure activities such as fishing. In particular, high temperatures lead to the occurrence of red tides, causing severe damage to ocean industries such as aquaculture. Meanwhile, changes in sea temperature are closely related to military operation to detect submarines. This is because the degree of diffraction, refraction, or reflection of sound waves used to detect submarines varies depending on the ocean mixed layer. Currently, research on the prediction of changes in sea water temperature is being actively conducted. However, existing research is focused on predicting only the surface temperature of the ocean, so it is difficult to identify fishery resources according to depth and apply them to military operations such as submarine detection. Therefore, in this study, we predicted the temperature of the ocean mixed layer at a depth of 38m by using temperature data for each water depth in the upper mixed layer and meteorological data such as temperature, atmospheric pressure, and sunlight that are related to the surface temperature. The data used are meteorological data and sea temperature data by water depth observed from 2016 to 2020 at the IEODO Ocean Research Station. In order to increase the accuracy and efficiency of prediction, LSTM (Long Short-Term Memory), which is known to be suitable for time series data among deep learning techniques, was used. As a result of the experiment, in the daily prediction, the RMSE (Root Mean Square Error) of the model using temperature, atmospheric pressure, and sunlight data together was 0.473. On the other hand, the RMSE of the model using only the surface temperature was 0.631. These results confirm that the model using meteorological data together shows better performance in predicting the temperature of the upper ocean mixed layer.

Edge to Edge Model and Delay Performance Evaluation for Autonomous Driving (자율 주행을 위한 Edge to Edge 모델 및 지연 성능 평가)

  • Cho, Moon Ki;Bae, Kyoung Yul
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.191-207
    • /
    • 2021
  • Up to this day, mobile communications have evolved rapidly over the decades, mainly focusing on speed-up to meet the growing data demands of 2G to 5G. And with the start of the 5G era, efforts are being made to provide such various services to customers, as IoT, V2X, robots, artificial intelligence, augmented virtual reality, and smart cities, which are expected to change the environment of our lives and industries as a whole. In a bid to provide those services, on top of high speed data, reduced latency and reliability are critical for real-time services. Thus, 5G has paved the way for service delivery through maximum speed of 20Gbps, a delay of 1ms, and a connecting device of 106/㎢ In particular, in intelligent traffic control systems and services using various vehicle-based Vehicle to X (V2X), such as traffic control, in addition to high-speed data speed, reduction of delay and reliability for real-time services are very important. 5G communication uses high frequencies of 3.5Ghz and 28Ghz. These high-frequency waves can go with high-speed thanks to their straightness while their short wavelength and small diffraction angle limit their reach to distance and prevent them from penetrating walls, causing restrictions on their use indoors. Therefore, under existing networks it's difficult to overcome these constraints. The underlying centralized SDN also has a limited capability in offering delay-sensitive services because communication with many nodes creates overload in its processing. Basically, SDN, which means a structure that separates signals from the control plane from packets in the data plane, requires control of the delay-related tree structure available in the event of an emergency during autonomous driving. In these scenarios, the network architecture that handles in-vehicle information is a major variable of delay. Since SDNs in general centralized structures are difficult to meet the desired delay level, studies on the optimal size of SDNs for information processing should be conducted. Thus, SDNs need to be separated on a certain scale and construct a new type of network, which can efficiently respond to dynamically changing traffic and provide high-quality, flexible services. Moreover, the structure of these networks is closely related to ultra-low latency, high confidence, and hyper-connectivity and should be based on a new form of split SDN rather than an existing centralized SDN structure, even in the case of the worst condition. And in these SDN structural networks, where automobiles pass through small 5G cells very quickly, the information change cycle, round trip delay (RTD), and the data processing time of SDN are highly correlated with the delay. Of these, RDT is not a significant factor because it has sufficient speed and less than 1 ms of delay, but the information change cycle and data processing time of SDN are factors that greatly affect the delay. Especially, in an emergency of self-driving environment linked to an ITS(Intelligent Traffic System) that requires low latency and high reliability, information should be transmitted and processed very quickly. That is a case in point where delay plays a very sensitive role. In this paper, we study the SDN architecture in emergencies during autonomous driving and conduct analysis through simulation of the correlation with the cell layer in which the vehicle should request relevant information according to the information flow. For simulation: As the Data Rate of 5G is high enough, we can assume the information for neighbor vehicle support to the car without errors. Furthermore, we assumed 5G small cells within 50 ~ 250 m in cell radius, and the maximum speed of the vehicle was considered as a 30km ~ 200 km/hour in order to examine the network architecture to minimize the delay.