Removal Characteristic of Arsenic by Sand Media Coated with both Iron-oxide and Manganese-oxide

산화철 및 산화망간이 동시에 코팅된 모래 매질을 이용한 비소오염 제거특성 연구

  • Kim, Byeong-Kwon (Department of Environmental Engineeing, Kwangwoon University) ;
  • Min, Sang-Yoon (Department of Environmental Engineeing, Kwangwoon University) ;
  • Chang, Yoon-Young (Department of Environmental Engineeing, Kwangwoon University) ;
  • Yang, Jae-Kyu (Division of General Education, Kwangwoon University)
  • Received : 2009.05.20
  • Accepted : 2009.06.30
  • Published : 2009.07.31

Abstract

In this study, iron and manganese coated sand (IMCS) was prepared by mixing Joomoonjin sand with solutions having different molar ratio of manganese ($Mn^{2+}$) and iron ($Fe^{3+}$). Mineral type of IMCS was analyzed by X-ray diffraction spectroscopy. Removal efficiency of arsenic through As(III) oxidation and As(V) adsorption by IMCS having different ratio of Mn/Fe was evaluated. The coated amount of total Mn and Fe on all IMCS samples was less than that on sand coated with iron-oxide alone (ICS) or manganese-oxide alone (MCS). The mineral type of the manganese oxide on MCS and iron oxides on ICS were identified as ${\gamma}-MnO_2$ and mixture of goethite and magnetite, respectively. The same mineral type was appeared on IMCS. Removed amount As(V) by IMCS was greatly affected by the content of Fe rather than by the content of Mn. Adsorption of As(V) by IMCS was little affected by the presence of monovalent and divalent electrolytes. However a greatly reduced As(V) adsorption as observed in the presence of trivalent electrolyte such as $PO_4\;^{3-}$. As(III) oxidation efficiency by MCS in the presence of NaCl or $NaNO_3$ was two times greater than that in the presence of $PO_4\;^{3-}$. Meanwhile a greater As(III) oxidation efficiency was observed by IMCS in the presence of $PO_4\;^{3-}$. This was explained by the competitive adsorption between phosphate and arsenate on the surface of IMCS.

본 연구에서는 여러 몰비의 망간과 철을 함유한 용액을 사용하여 담체인 모래 표면에 이들 산화물들이 동시에 코팅된 산화철 및 산화망간 코팅사(IMCS)를 제조하였으며, X-선 회절분석을 통하여 제조한 IMCS 표면의 광물종 규명과 이들에 의한 As(III) 산화 및 As(V) 흡착능을 평가하였다. 망간과 철을 동시에 코팅한 IMCS들에서의 철 및 망간의 총량은 단일금속용액으로 코팅시킨 담체(ICS 혹은 MCS)에 비하여 감소하였지만 코팅된 철산화물은 goethite와 magnetite의 혼합물 그리고 망간 산화물은 ${\gamma}-MnO_2$로서 매우 유사하였다. IMCS에 의한 As(V) 흡착량은 코팅된 망간보다는 철 함량에 의해 크게 영향을 받았다. 그리고 IMCS에 의한 As(V) 흡착량은 1가 및 2가 이온들로 이루어진 이온세기 화학종으로 이온세기를 고정하였을 때에는 큰 영향을 받지 않았으나 $PO_4\;^{3-}$와 같은 3가 화학종을 사용한 경우에는 크게 억제되었다. 망간만 코팅시켜 얻은 MCS의 경우, NaCl 및 $NaNO_3$와 같은 1가 이온세기 화학종이 존재하는 경우는 $PO_4\;^{3-}$와 같은 3가 이온세기 화학종이 존재하는 경우에서 보다 2배 이상의 산화효율을 나타내었다. 이에 반해 망간과 철이 함께 코팅된 7:3, 5:5, 3:7 몰비의 경우에는 $PO_4\;^{3-}$를 이온세기 화학종으로 사용한 경우가 다른 이온세기 화학종이 존재하는 경우에서 보다 오히려 As(III) 산화력이 높게 나타났는데 이것은 $PO_4\;^{3-}$가 As(V)와 IMCS 표면에 대한 경쟁흡착을 함에 따른 결과로 나타났다.

Keywords

References

  1. Richardson, S. D., “Environmental Mass Spectrometry: Emerging Contaminants and Current Issues,”Anal Chem., 78, 4021-4046(2006) https://doi.org/10.1021/ac060682u
  2. Tien, V. N., Chaudhary, D. S., Ngo, H. H. and Vignes-waran, S., 'Arsenic In Water: Concerns And Treatment Technologies,' J. Ind. Eng. Chem., 10, 337-348(2004)
  3. 임재명, 조용진, 한동준“, 금속광산광재의물성및침출특성,”한국폐기물학회지, 12(5), 534-543(1995)
  4. 정명채, 정문영, 최연왕, “국내 휴/폐광 금속광산 주변의 중금속 환경오염 평가,”자원환경지질, 37(1), 21-33(2004)
  5. Tournassat, C., Charlet, L., Bosbach, D. and Manceau, A., “Arsenic(III) Oxidation by Birnessite and Precipitation of Manganese(II) Arsenate,”Environ. Sci. Technol., 36, 493-500(2002)
  6. Frank, P. and Clifford, D., “Arsenic(III) oxidation and removal from drinking water,”US-EPA, 600/S2-86/O21 (1986)
  7. 정재현, 양재규, 송기훈, 장윤영“, Mn$O_2$-코팅 모래흡착제 제조 및 As(III) 산화처리적용," 대한환경공학회지, 28(1), 54-60(2006)
  8. 장윤영, 김광섭, 정재현, 이승목, 양재규, 박준규,“ 철코팅 모래흡착제 제조 및 비소흡착”, 대한환경공학회지, 27(7), 697-703 (2005)
  9. Yang, J. K., Song, K. H., Kim, B. K., Hong, S. C., Choi, D. E. and Chang, Y. Y., “Arsenic removal by iron and manganese coated sand”, Water Sci. Technology., 56(7), 161-169(2007) https://doi.org/10.2166/wst.2007.681
  10. 송기훈, “철 및 망간코팅사의 제조 조건 및 비소 제거 특성에 관한 연구,”환경공학과 박사학위졸업논문 광운대학교, pp. 82-93(2008)
  11. Moore, J. N., Ficklin, W. H. and Johns, C., “Partitioning of arsenic and metals in reducing sulfidic sediments,”Environ. Sci. Technol., 22, 432-437(1988) https://doi.org/10.1021/es00169a011
  12. Bang, S. B. and Meng, X., “A Review of Arsenic Interactions with Anions and Iron Hydroxides,”Environ. Eng. Res., 9(4), 184-192(2004) https://doi.org/10.4491/eer.2004.9.4.184
  13. Goldberg, S. and Johnson, C. T., “Mechanism of arsenic adsorption on amorphous oxides evaluated using macroscopic measurement”, J. Colloid and Interface Science, 234, 204-216(2001) https://doi.org/10.1006/jcis.2000.7295
  14. Amirbahman, A., Kent, D. B., Curtis, G. P. and Davis, J. A., “Kinetics of sorption and abiotic oxidation of arsenic(III) by aquifer materials,”Geochimica et Cosmochimica Acta, 70, 533-547(2006) https://doi.org/10.1016/j.gca.2005.10.036
  15. Huang, J. G. and Liu, J. C., “Enhanced removal of As(V) from water with iron-coated spent catalyst,”Sep. Sci. Technol., 32, 1557-1569(1997) https://doi.org/10.1080/01496399708004066