DOI QR코드

DOI QR Code

Comparative Studies on Mechanism of Photocatalytic Degradation of Rhodamine B with Sulfide Catalysts under Visible Light Irradiation

가시광선하에서 황화물계 광촉매를 이용한 로다민 B의 광분해 반응기구에 대한 비교 연구

  • 이승현 (부경대학교 공과대학 공업화학과) ;
  • 정영재 (부경대학교 공과대학 공업화학과) ;
  • 이종민 (부경대학교 공과대학 공업화학과) ;
  • 김대성 (부경대학교 공과대학 공업화학과) ;
  • 배은지 (부경대학교 공과대학 공업화학과) ;
  • 홍성수 (부경대학교 공과대학 화학공학과) ;
  • 이근대 (부경대학교 공과대학 공업화학과)
  • Received : 2019.01.22
  • Accepted : 2019.02.22
  • Published : 2019.03.30

Abstract

CdS and CdZnS/ZnO materials were prepared using precipitation method and used as photocatalysts for the photocatalytic degradation of rhodamine B (RhB) under visible light irradiation. The prepared photocatalysts were also characterized by XRD and UV-vis DRS. The results indicated that the photocatalysts with intended crystalline structures were successfully obtained and both the CdS and CdZnS/ZnO can absorb visible light as well as UV. The photocatalytic activities were examined with the addition of scavenger for various active chemical species and the difference of reaction mechanisms over the catalysts were discussed. The $CH_3OH$, KI and p-benzoquinone were used as scavengers for ${\cdot}OH$ radical, photogenerated positive hole and ${\cdot}O_2{^-}$ radical, respectively. The CdS and CdZnS/ZnO showed different photocatalytic degradation mechanisms of RhB. It can be postulated that ${\cdot}O_2{^-}$ radical is the main active species for the reaction over CdS photocatalyst, while the photogenerated positive hole for CdZnS/ZnO photocatalyst. As a result, the predominant reaction pathways over CdS and CdZnS/ZnO photocatalysts were found to be the dealkylation of chromophore skeleton and the cleavage of the conjugated chromophore structure, respectively. The above results may be mainly ascribed to the difference of band edge potential of conduction and valence bands in CdS, CdZnS and ZnO semiconductors and the redox potentials for formation of active chemical species.

CdS 및 CdZnS/ZnO를 침전법으로 제조하여 가시광선하에서의 로다민 B의 광분해 반응에 대한 광촉매로 이용하였다. 제조된 광촉매들은 X선 회절분석기와 UV-vis 확산반사 분광법 등으로 특성을 분석하였으며, 그 결과 원하는 결정구조를 지닌 광촉매들이 생성되었으며 또한 CdS 및 CdZnS/ZnO 두 가지 광촉매 모두 자외선뿐만 아니라 가시광선 영역의 빛도 효율적으로 흡수함을 알 수 있었다. 여러 종류의 활성 화학종에 대한 포집제들을 첨가하면서 각각의 광촉매에 대한 활성을 조사하였으며, 특히 두 가지 촉매상에서의 반응기구 차이점에 중점을 두고 고찰하였다. 이때 $CH_3OH$, KI 및 p-benzoquinone을 각각 ${\cdot}OH$ 라디칼, 광여기 정공 그리고 ${\cdot}O_2{^-}$ 라디칼에 대한 포집제로 이용하였다. 각각의 광촉매상에서는 서로 다른 반응기구에 의해서 반응이 진행되는 것으로 나타났다. CdS 광촉매 반응에서는 ${\cdot}O_2{^-}$ 라디칼이 그리고 CdZnS/ZnO 광촉매 반응에 있어서는 광여기 정공이 중요한 역할을 하는 것으로 판단되며, 따라서 CdS와 CdZnS/ZnO 각각의 광촉매상에서는 발색단 골격의 탈알킬화 반응 및 발색단 콘쥬케이트 구조의 절단 과정을 통하여 반응이 우선적으로 진행된다는 것을 알 수 있었다. 이러한 결과들은 CdS, CdZnS 그리고 ZnO 각각 반도체들의 전도대와 가전자대의 띠끝 전위와 활성 화학종 생성에 대한 산화환원 전위의 차이에 주로 기인한 것으로 생각된다.

Keywords

CJGSB2_2019_v25n1_46_f0001.png 이미지

Figure 1. XRD patterns of CdS and CdZnS/ZnO catalysts.

CJGSB2_2019_v25n1_46_f0002.png 이미지

Figure 2. UV-vis DRS of CdS and CdZnS/ZnO catalysts.

CJGSB2_2019_v25n1_46_f0003.png 이미지

Figure 3. UV-vis spectral change of rhodamine B (RhB) solution in the presence of photocatalyst (a) CdS and (b) CdZnS/ZnO under visible light irradiation.

CJGSB2_2019_v25n1_46_f0004.png 이미지

Figure 4. Effect of scavenger on the photocatalytic degradation of rhodamine B in the presence of photocatlyst (a) CdS and (b) CdZnS/ZnO under visible light irradiation.

CJGSB2_2019_v25n1_46_f0005.png 이미지

Figure 5. UV-vis spectral changes during photocatalytic degradation of RhB using CdS photocatalyst in the presence of sca-venger (a) CH3OH, (b) KI, and (c) p-benzoquinone.

CJGSB2_2019_v25n1_46_f0006.png 이미지

Figure 6. UV-vis spectral changes during photocatalytic degradation of RhB using CdZnS/ZnO photocatalyst in the presence of scavenger (a) CH3OH, (b) KI, and (c) p-benzoquinone.

References

  1. Rao, A. N., Sivasankarb, B., and Sadasivamb, V., "Kinetic Studies on the Photocatalytic Degradation of Direct Yellow 12 in the Presence of ZnO Catalyst," J. Mol. Catal. A: Chem., 306, 77-81 (2009). https://doi.org/10.1016/j.molcata.2009.02.028
  2. Khanna, A., and Shetty, V., "Solar Photocatalysis for Treatment of Acid Yellow-17 (AY-17) Dye Contaminated Water using $Ag@TiO_2$ Core-Shell Structured Nanoparticles," Environ. Sci. Pollut. Res., 20, 5692-5707 (2013). https://doi.org/10.1007/s11356-013-1582-4
  3. Chan, S. H. S., Wu, T. Y., Juan, J. C., and Teh, C. Y., "Recent Developments of Metal Oxide Semiconductors as Photocatalysts in Advanced Oxidation Processes (AOPs) for Treatment of Dye Waste-water," J. Chem. Technol. Biotechnol., 86, 1130-1158 (2011). https://doi.org/10.1002/jctb.2636
  4. Palominos, R., Freer, J., Mondaca, M. A., and Mansilla, H. D., "Evidence for Hole Participation during the Photocatalytic Oxidation of the Antibiotic Flumequine," J. Photochem. Photobiol. A Chem., 193, 139-145 (2008). https://doi.org/10.1016/j.jphotochem.2007.06.017
  5. Etacheri, V., Valentin, C. D., Schneider, J., Bahnemann, D., and Pillai, S. C., "Visible-Light Activation of $TiO_2$ Photocatalysts: Advances in Theory and Experiments," J. Photochem. Photobiol. C: Photochem. Rev., 25, 1-29 (2015). https://doi.org/10.1016/j.jphotochemrev.2015.08.003
  6. Li, X. Z., Li, F. B., Yang, C. L., and Ge, W. K., "Photocatalytic Activity of $WO_x-TiO_2$ under Visible Light Irradiation," J. Photochem. Photobio. A, 141, 209-217 (2001). https://doi.org/10.1016/S1010-6030(01)00446-4
  7. Lei, Z., You, W., Liu, M., Zhou, G., Takata, T., Hara, M., Domen, K., and Li, C., "Photocatalytic Water Reduction under Visible Light on a Novel $ZnIn_2S_4$ Catalyst Synthesized by Hydrothermal Method," Chem. Commun., 2142-2143 (2003).
  8. Ganesh, R. S., Sharma. S. K., Durgadevi, E., Navaneethan, M., Binitha, H. S., Ponnusamy, S., Muthamizhchelvan, C., Hayakawa, Y., and Kim, D. Y., "Surfactant Free Synthesis of CdS Nanospheres, Microstructural Analysis, Chemical Bonding, Optical Properties and Photocatalytic Activities," Superlattices Microstruct., 104, 247-257 (2017). https://doi.org/10.1016/j.spmi.2017.02.029
  9. Yue, X., Yi, S., Wang, R., Zhang, Z., and Qiu, S., "Cadmium Sulfide and Nickel Synergetic Co-Catalysts Supported on Graphitic Carbon Nitride for Visible-Light-Driven Photocatalytic Hydrogen Evolution," Sci. Rep., 6, 22268 (2016). https://doi.org/10.1038/srep22268
  10. Chen, F., Jia, D., Cao, Y., Jin, X., and Liu, A., "Facile Synthesis of CdS Nanorods with Enhanced Photocatalytic Activity," Ceram. Int., 41, 14604-14609 (2015). https://doi.org/10.1016/j.ceramint.2015.07.179
  11. Sehati, S., and Entezari, M. H., "Sono-intercalation of CdS Nanoparticles into the Layers of Titanate Facilitates the Sunlight Degradation of Congo Red," J. Colloid Interface Sci., 462, 130-139 (2016). https://doi.org/10.1016/j.jcis.2015.09.070
  12. Li, Q., Meng, H., Zhou, P., Zheng, Y., Wang, J., Yu, J., and Gong, J., "$Cd_{0.5}Zn_{0.5}S$ Solid Solutions with Controlled Bandgap and Enhanced Visible-Light Photocatalytic $H_2$-Production Activity," ACS Catal., 3, 882-889 (2013). https://doi.org/10.1021/cs4000975
  13. Zhu, H., Jianga, R., Xiao, L., Chang, Y., Guan, Y., Li, X., and Zeng, G., "Photocatalytic Decolorization and Degradation of Congo Red on Innovative Crosslinked Chitosan/Nano-CdS Composite Catalyst under Visible Light Irradiation," J. Hazard. Mater., 169, 933-940 (2009). https://doi.org/10.1016/j.jhazmat.2009.04.037
  14. Zhou, Y., Wang, Y., Wen, T., Zhang, S., Chang, B., and Guo, Y., "Mesoporous $Cd_{1-x}Zn_xS$ Microspheres with Tunable Bandgap and High Specific Surface Areas for Enhance Visible-Light-Driven Hydrogen Generation," J. Colloid Interface Sci., 467, 97-104 (2016). https://doi.org/10.1016/j.jcis.2016.01.003
  15. Lee, G. D., Park, S. S., Jin, Y. E., and Hong., S. S., "Recycling Properties of Visible-Light Driven CdZnS/ZnO Photocatalyst Prepared by a Simple Precipitation Method," Clean Technol., 23, 196-204 (2017). https://doi.org/10.7464/KSCT.2017.23.2.196
  16. Cui, W., Ma, S., Liu, L., Hu, J., Liang, Y., and McEvoy, J. G., "Photocatalytic Activity of $Cd_{1-x}Zn_xS/K_2Ti_4O_9$ for Rhodamine B Degradation under Visible Light Irradiation," Appl. Surf. Sci., 271, 171-181 (2013). https://doi.org/10.1016/j.apsusc.2013.01.156
  17. Chen, C., Zhao, W., Li, J., and Zhao, J., "Formation and Identification of Intermediates in Visible-Light-Assisted Photogegradation of Sulforhodamine-B Dye in Aqueous $TiO_2$ Dispersion," Environ. Sci. Technol., 36, 3604-3611 (2002). https://doi.org/10.1021/es0205434
  18. Liang, H., Jia, Z., Zhang, H., Wang, X., and Wang, J., "Photocatalysis Oxidation Activity Regulation of $Ag/TiO_2$ Composites Evaluated by the Selective Oxidation of Rhodamine B," Appl. Surf. Sci., 422, 1-10 (2017). https://doi.org/10.1016/j.apsusc.2017.05.211
  19. Lee, H. J., Jin, Y. E., Park, S. S., Hong, S. S., and Lee, G. D., "Photocatalytic Degradation of Rhodamine B Using $Cd_{0.5}Zn_{0.5}S/ZnO$ Photocatalysts under Visible Light Irradiation," Appl. Chem. Eng., 26, 356-361 (2015). https://doi.org/10.14478/ace.2015.1046
  20. Min, Y., Fan, J., Xu, Q., and Zhang, S., "High Visible-Photoactivity of Spherical $Cd_{0.5}Zn_{0.5}S$ Coupled with Grahpene Composite for Decolorizing Organic Dyes," J. Alloy. Compd., 609, 46-53 (2014). https://doi.org/10.1016/j.jallcom.2014.04.143
  21. McBride, R. A., Kelly, J. M., and McCormack, D. E., "Growth of Well-Defined ZnO Microparticles by Hydroxide Ion Hydrolysis of Zinc Salts," J. Mater. Chem., 13, 1196-1201 (2003). https://doi.org/10.1039/b211723c
  22. Li, Y., Tang, L., Peng, S., Li, Z., and Lu, G., "Phosphate-Assisted Hydrothermal Synthesis of Hexagonal CdS for Efficient Photocatalytic Hydrogen Evolution," CrystEngComm., 14, 6974-6982 (2012). https://doi.org/10.1039/c2ce25838b
  23. Tai, G. A., Zhou, J. X., and Guo, W. L., "Inorganic Salt-Induced Phase Control and Optical Characterization of Cadmium Sulfide Nanoparticles," Nanotechnology, 21, 175601-175607 (2010). https://doi.org/10.1088/0957-4484/21/17/175601
  24. Jing, D., and Guo, L., "A Novel Method for the Preparation of a Highly Stable and Active CdS Photocatalyst with a Special Surface Nanostructure," J. Phys. Chem. B, 110, 11139-11145 (2006). https://doi.org/10.1021/jp060905k
  25. Wang, W., Zhu, W., and Xu, H., "Monodisperse, Mesoporous $Zn_xCd_{1-x}S $ Nanoparticles as Stable Visible-Light-Driven Photocatalysts," J. Phys. Chem., 112, 16754-16758 (2008).
  26. Deshpande, A., Shah, P., Gholap, R S., and Gupta, N. M., "Interfacial and Physico-Chemical Properties of Polymer- Supported $CdS{\cdot}ZnS$ Nanocomposites and Their Role in the Visible-Light Mediated Photocatalytic Splitting of Water," J. Colloid Interface Sci., 333, 263-268 (2009). https://doi.org/10.1016/j.jcis.2009.01.037
  27. Xie, S., Lu, X., Zhai, T., Gan, J., Li, W., Xu, M., Yu, M., Zhang, Y.-M., and Tong, Y., "Controllable Synthesis of $Zn_xCd_{1-x}S@ZnO$ Core-Shell Nanorods with Enhanced Photocatalytic Activity," Langmuir, 28, 10558-10564 (2012). https://doi.org/10.1021/la3013624
  28. Yu, K., Yang, S., He, H., Sun, C., Gu, C., and Ju, Y., "Visible Light-Driven Photocatalytic Degradation of Rhodamine B over $NaBiO_3$: Pathways and Mechanism," J. Phys. Chem. A, 113, 10024-10032 (2009). https://doi.org/10.1021/jp905173e
  29. Zhuang, J., Dai, W., Tian, Q., Li, Z., Xie, L., Wang, J., and Liu, P., "Photocatalytic Degradation of RhB over $TiO_2$ Bilayer Films: Effect of Defects and Their Location," Langmuir, 26, 9686-9694 (2010). https://doi.org/10.1021/la100302m
  30. An, T., An, J., Yang, H., Li, G., Feng, H., and Nie, X., "Photocatalytic Degradation Kinetics and Mechanism of Antivirus Drug-Lamivudine in $TiO_2$ Dispersion," J. Hazard. Mater., 197, 229-236 (2011). https://doi.org/10.1016/j.jhazmat.2011.09.077
  31. Dong, R., Tian, B., Zhang, J., Wang, T., Tao, Q., Bao, S., Yang, F., and Zeng, C., "$AgBr@Ag/TiO_2$ Core-Shell Composite with Excellent Visible Light Photocatalytic Activity and Hydrothermal Stability," Catal. Commun., 38, 16-20 (2013). https://doi.org/10.1016/j.catcom.2013.04.006
  32. Wu, T., Liu, G., Zhao, J., Hidaka, H., and Serpone, N., "Photoassisted Degradation of Dye Pollutants. V. Self-Photosensitized Oxidative Transformation of Rhodamine B under Visible Light Irradiation in Aqueous $TiO_2$ Dispersions," J. Phys. Chem. B, 102, 5845-5851 (1998). https://doi.org/10.1021/jp980922c
  33. Watanabe, T., Takizawa, T., and Honda, K., "Photocatalysis through Exitation of Adsorbates. 1. Highly Efficient N-Deethylation of Rhodamine B Adsorbed to CdS," J. Phys. Chem., 81, 1845-1851 (1977). https://doi.org/10.1021/j100534a012
  34. Khan, U. A., Liu, J., Pan, J., Ma, H., Zuo, S., Yu, Y., Ahmad, A., and Li, B., "Fabrication of Floating CdS/EP Photocatalyst by Facile Liquid Phase Deposition for Highly Efficient Degradation of Rhodamine B (RhB) under Visible Light Irradiation," Mater. Sci. Semicond. Proc., 83, 201-210 (2018). https://doi.org/10.1016/j.mssp.2018.04.028
  35. Kudo, A., and Miseki, Y., "Heterogeneous Photocatalyst Materials for Water Splitting," Chem. Soc. Rev., 38, 253-278 (2009). https://doi.org/10.1039/B800489G
  36. Li, W., Li, D., Meng, S., Chen, W., Fu, X., and Shao, Y., "Novel Approach to Enhance Photosensitized Degradation of Rhodamine B Under Visible Light Irradiation by the $Zn_xCd_{1-x}S/TiO_2$ Nanocomposites," Environ. Sci. Technol., 45, 2987-2993 (2011). https://doi.org/10.1021/es103041f
  37. Xing, C. J., Zhang, Y. J., Yan, W., and Guo, L. J., "Band Structure-Controlled Solid Solution of Photocatalyst for Hydrogen Production by Water Splitting," Int. J. Hydrogen Energy, 31, 2018-2024 (2006). https://doi.org/10.1016/j.ijhydene.2006.02.003
  38. Cui, W. Q., An, W. J., Liu, J., J. S. Hu, J. S., and Liang, Y. H., "Synthesis of CdS/BiOBr Composite and Its Enhanced Photocatalytic Degradation for Rhodamine B," Appl. Surf. Sci., 319, 298-305 (2014). https://doi.org/10.1016/j.apsusc.2014.05.179
  39. Yang, G. R., Zhang, Q., Chang, W., and Yan, W., "Fabrication of $Cd_{1-x}Zn_xS/TiO_2$ Heterostructures with Enhanced Photocatalytic Activity," J. Alloys Compd., 580, 29-36 (2013). https://doi.org/10.1016/j.jallcom.2013.05.083
  40. Chan, C. C., Chang, C. C., Hsu, C. H., Weng, Y. C., Chen, K. Y., Lin, H. H., Huang, W. C., and Cheng, S. F., "Efficient and Stable Photocatalytic Hydrogen Production from Water Splitting over $Zn_xCd_{1-x}S$ Solid Solutions under Visible Light Irradiation," Int. J. Hydrogen Energy, 39, 1630-1639 (2014). https://doi.org/10.1016/j.ijhydene.2013.11.059
  41. Liu, G., Niu, P., Sun, C., Smith, S. C., Chen, Z., Lu, G. Q., and Cheng, H.-M., "Unique Electronic Structure Induced High Photoreactivity of Sulfur-Doped Graphitic $C_3N_4$," J. Am. Chem. Soc., 132, 11642-11648 (2010). https://doi.org/10.1021/ja103798k
  42. Kozlova, E. A., Markovskaya, D. A., Cherepanova, S. V., Saraev, A. A., Gerasimov, E. Y., Perevalov, T. V., Kaichev, V. V., and Parmon, V. N., "Novel Photoctalysts Based on $Cd_{1-x}Zn_xS/Zn(OH)_2$ for the Hydrogen Evolution from Water Solution of Ethanol," Int. J. Hydrogen Energy, 39, 18758-18769 (2014). https://doi.org/10.1016/j.ijhydene.2014.08.145

Cited by

  1. 가시광선하에서 CdS와 CdZnS/ZnO 광촉매를 이용한 로다민 B, 메틸 오렌지 및 메틸렌 블루의 광분해 반응 vol.26, pp.4, 2019, https://doi.org/10.7464/ksct.2020.26.4.311