• Title/Summary/Keyword: 회전 우주

Search Result 441, Processing Time 0.026 seconds

Indirect Verification of the Icing Test Condition Using Ice Thickness (얼음두께를 이용한 결빙시험조건의 간접 확인기법)

  • Kim, Yoo Kyung;Park, Nameun;Choi, Gio
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.11
    • /
    • pp.944-951
    • /
    • 2018
  • Artificial icing test and wind tunnel test can be performed to reduce the development period when a rotorcraft is required operation under icing situations. Artificial icing test of the KUH(Korean Utility Helicopter) was performed in advance to verify anti-icing and de-icing performance before natural icing test. Although high-precision sensor, the CCP(Cloud Combination Probe) is used to measure icing test condition parameters such as LWC(Liquid Water Content) and MVD(Median Volume Diameter), the measured values need to be verified in various methods due to the possibility of uncertainties which are the test atmosphere environment, sensor errors, and etc. The calculated LWC from the ice thickness cumulated on the fuselage of the KUH is compared to the measured value by CCP, and the results show the effective indirect method to check the test conditions.

Controlling Low Frequency Instability in Hybrid Rocket Combustion With Swirl Injection and Fuel Insert (스월 분사와 삽입연료에 의한 하이브리드 로켓 연소의 저주파수 연소불안정 조절)

  • Hyun, Wonjeong;Lee, Chanjin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.2
    • /
    • pp.139-146
    • /
    • 2021
  • In hybrid rocket combustion, the oxidizer swirl injection is frequently used to stabilize the combustion as the rotational velocity component affects the boundary layer flow. However, as the swirl strength increases, a problem arises where the combustion performance changes too much. Thus, this study attempts to control the low frequency instability while minimizing the change in combustion performance by adapting attenuated swirl injection with fuel insert used in reference [7]. To this end, a series of experimental tests were performed by varying swirl intensity and the location of the fuel insert. In the tests, the occurrence of combustion instability and combustion performance were closely monitored. The results confirmed that combustion instability was successfully suppressed at the condition of the swirl angle 6 degree and the location of fuel insert 310 mm. And, the changes in combustion pressure, O/F ratio, and fuel regression rate were found as minimal compared to the baseline case. Also the results reconfirmed that the formation of positive coupling between two high frequency oscillations in 500 Hz band, combustion pressure(p') and heat release oscillation(q'), is the necessary and sufficient condition of the occurrence of low frequency instability.

Effect of the Leading Edge and Vein Elasticity on Aerodynamic Performance of Flapping-Wing Micro Air Vehicles (날갯짓 초소형 비행체의 앞전 및 시맥 탄성이 공력 성능에 미치는 영향)

  • Yoon, Sang-Hoon;Cho, Haeseong;Shin, Sang-Joon;Huh, Seokhaeng;Koo, Jeehoon;Ryu, Jaekwan;Kim, Chongam
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.3
    • /
    • pp.185-195
    • /
    • 2021
  • The flapping-wing micro air vehicle (FW-MAV) in this study utilizes the cambered wings made of quite flexible material. Similar to the flying creatures, the present cambered wing uses three different materials at its leading edge, vein, and membrane. And it is constrained in various conditions. Since passive rotation uses the flexible nature of the wing, it is important to select an appropriate material for a wing. A three-dimensional fluid-structure interaction solver is developed for a realistic modeling of the cambered wing. Then a parametric study is conducted to evaluate the aerodynamic performance in terms of the elastic modulus of leading edge and vein. Consequently, the elastic modulus plays a key role in enhancing the aerodynamic performance of FW-MAVs.

Reverse Design for Composite Rotor Blade of BO-105 Helicopter (BO-105 헬리콥터 복합재 로터 블레이드 역설계)

  • Lee, Chang-Bae;Jang, KiJoo;Im, Byeong-Uk;Shin, SangJoon
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.7
    • /
    • pp.539-547
    • /
    • 2021
  • Helicopter rotor blade is required to be designed by considering the interacting effects among aerodynamics, flexibility, and controllability. The reverse design allows the structural components to have common characteristics by using the configuration numerics and experimental results. This paper aims to design the composite rotor blade which will feature common characteristics with that of BO-105. The present engineering design procedure is done by dividing the rotor blade into a few sections and composite laminates across the cross section. For each section, variational asymptotic beam sectional analysis (VABS) program is used to evaluate its flapwise, lagwise, and torsion stiffnesses to have discrepancy smaller than certain tolerance. Finally, CAMRAD II is used to predict the stress acting on the rotor blade during the specific flight condition and to check whether the present deign is structurally valid.

Validation for Performance and Hub Vibratory Load Analyses of Lift-offset Coaxial Rotors in Wind-Tunnel Tests (풍동 시험용 Lift-offset 동축 반전 로터에 대한 성능 및 허브 진동 하중 해석의 검증 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.497-505
    • /
    • 2022
  • Performance and hub vibratory load analyses for a lift-offset coaxial rotor are conducted using a rotorcraft comprehensive analysis code, CAMRAD II. The lift-offset coaxial rotor is trimmed to match the total rotor thrust(lift-offset coaxial rotor's thrust) or the individual rotor thrust(upper and lower rotor thrusts, respectively) in this study. The individual rotor's lift and torque, and effective rotor lift to drag ratio for the total rotor are investigated for various advance ratios and lift-offset values. The two result sets with different trim methods are similar to each other and they are correlated well with the wind-tunnel test results. Therefore, the present study using CAMRAD II validates successfully the aeromechanics modeling and analysis techniques for the lift-offset coaxial rotor.

Study on Performance Analyses on Coaxial Co-rotating Rotors of e-VTOL Aircraft for Urban Air Mobility (도심 항공 교통을 위한 전기동력 수직 이착륙기의 동축 동회전 로터의 성능해석 연구)

  • Lee, Yu-Been;Park, Jae-Sang
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.12
    • /
    • pp.1011-1018
    • /
    • 2021
  • This numerical study conducts the modeling and the hover performance analyses of coaxial co-rotating rotor(or stacked rotor), using a rotorcraft comprehensive analysis code, CAMRAD II. The important design parameters such as the index angle and axial spacing for the coaxial co-rotating rotor are varied in this simulation study. The coaxial co-rotating rotor is trimmed using the torque value of the upper rotor of the previous coaxial counter-rotating rotor or the total thrust value of the previous coaxial counter-rotating rotor in hover. The maximum increases in the rotor thrust is 1.84% for the index angle of -10° when using the torque trim approach. In addition, the maximum decreases in the rotor power is 4.53% for the index angle of 20° with the thrust trim method. Thus, the present study shows that the hover performance of the coaxial co-rotating rotor for e-VTOL aircraft can be changed by the index angle.

Numerical Investigation of Ground Effect of Dual Ducted Fan Aircraft During Hovering Flight (제자리 비행하는 이중 덕트 팬 비행체의 지면 효과에 대한 수치적 연구)

  • Lee, Yujin;Oh, Sejong;Park, Donghun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.10
    • /
    • pp.677-690
    • /
    • 2022
  • By using an actuator disk method based flow solver, aerodynamic analysis is carried out for a dual ducted fan aircraft, which is one of the VTOL compound aircrafts, and its associated ground effect is analyzed. The characteristics and accuracy of the solver for ground effect analysis is evaluated through a comparison with the results obtained from the sliding mesh technique. The aerodynamic performance and flow field characteristics with respect to the distance from the ground are analyzed. As the ground distance decreases, the fan thrust increases, but the deterioration of total normal force and hovering flight efficiency is identified owing to the decrease in the vertical force of the duct, fuselage, and wing. By examining the flow field in the bottom of the fuselage, the ground vortices and fountain flow generated by the interaction of the fan wake and ground are identified, and their influence on the aerodynamic performance is analyzed. The strength and characteristics of outwash with respect to the ground distance and azimuth direction are analyzed through comparison/examination of velocity profile. Influence of the ground effect with respect to collective pitch angle is also identified.

Lithospheric Plate Motion Model: Development and Current Status (지각판 운동 모델의 변천과 현황)

  • Sung-Ho Na;Jungho Cho
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.661-679
    • /
    • 2022
  • Plate tectonics, with the continental drift theory and later strongly supported by the sea-floor spreading theory with evidence of paleo-geomagnetic fields, ocean floor sediments, successfully explained the slow but continuous movements of rigid lithospheres in geological time. Initially, plate motions were described as relative movements between adjacent plates, mainly based on paleo-geomagnetic reversal data. The advent of space geodetic techniques in the 1980s enabled direct measurements of plate velocities and assessment of deformations within certain regions. In this review, early relative plate motion models are briefly summarized, the no-net-rotation frame theory and corresponding models are explained, and the characteristics of the most recent models that incorporate intraplate deformation are described. Additionally, the plate motion section of the International Terrestrial Reference Frame is introduced, and a few recent case studies of local plate motion are briefly described; for example, in South America, Europe, Antarctica, and Turkey. Finally, studies of plate motion in northeastern Asia focusing on the Korean Peninsula are introduced.

Analysis of Variations in Deformations of Additively Manufactured SUS316L Specimen with respect to Process Parameters and Powder Reuse (금속 적층제조 방식을 이용한 SUS316L 시편의 공정 파라미터 및 금속 분말 재사용에 따른 변형량 변화 분석)

  • Kim, Min Soo;Kim, Ji-Yoon;Park, Eun Gyo;Kim, Tae Min;Cho, Jin Yoen;Kim, Jeong Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.4
    • /
    • pp.223-231
    • /
    • 2022
  • Residual stress that can occur during the metal additive manufacturing process is an important factor that must be properly controlled for the precise production of metal parts through 3D printing. Therefore, in this study, the factors affecting these residual stresses were investigated using an experimental method. For the experiment, a specimen was manufactured through an additive manufacturing process, and the amount of deformation was measured by cutting it. By appropriately calibrating the measured data using methods such as curve fitting, it was possible to quantitatively analyze the effect of process parameters and metal powder reuse on deformation due to residual stress. From this result, it was confirmed that the factor that has the greatest influence on the magnitude of deformation due to residual stress in the metal additive manufacturing process is whether the metal powder is reused. In addition, it was confirmed that process parameters such as laser pattern and laser scan angle can also affect the deformation.

DESIGNING A SMALL-SIZED ENGINEERING MODEL OF SOLAR EUV TELESCOPE FOR A KOREAN SATELLITE (인공위성 탑재용 소형 극자외선 태양망원경 공학 모형 설계)

  • 한정훈;장민환;김상준
    • Journal of Astronomy and Space Sciences
    • /
    • v.18 no.2
    • /
    • pp.145-152
    • /
    • 2001
  • For the research of solar EUV (extreme ultraviolet) radiation, we have designed a small-sifted engineering model of solar EUV telescope, which is suitable for a Korean satellite. The EUV sole. telescope was designed to observe the sun at $584.3AA$(He I) and $629.7AA$(OV) The optical system is an f/8 Ritchey-Chr rien, and the effective diameter and focal length are 80mm and 640mm, respectively. The He I and 0V filters are loaded in a filter wheel. In the detection part, the MCP (Microchannel Plate) type is Z-stack, and the channel-to-diameter radio is 40:1. MCP and CCD are connected by fiber optic taper. A commercial optical design software is used for the analysis of the optical system design.

  • PDF